12,947 research outputs found

    Effect of control logic modifications on airstart performance of F100 engine model derivative engines in an F-15 airplane

    Get PDF
    A series of airstarts were conducted in an F-15 airplane with two prototype Pratt and Whitney F100 Engine Model Derivative engines equipped with Digital Electronic Engine Control (DEEC) systems. The airstart envelope and the time required for airstarts were defined. Comparisons were made between the original airstart logic, and modified logic which was designed to improve the airstart capability. Spooldown airstarts with the modified logic were more successful at lower altitudes than were those with the original logic. Spooldown airstart times ranged from 33 seconds at 250 knots to 83 seconds at 175 knots. The modified logic improved the airstart time from 31% to 53%, with the most improved times at slower airspeeds. Jet fuel starter (JFS)-assisted airstarts were conducted at 7000 m and airstart times were significantly faster than unassisted airstarts. The effect of altitude on airstart times was small

    Net energy analysis of solar and conventional domestic hot water systems in Melbourne, Australia

    Full text link
    It is commonly assumed that solar hot water systems save energy and reduce greenhouse gas emissions. Very rarely has the life-cycle energy requirements of solar hot water systems been analysed, including their embodied energy. The extent to which solar hot water systems save energy compared to conventional systems in Melbourne, Australia, is shown through a comparative net energy analysis. The solar systems provided a net energy saving compared to the conventional systems after 0.5 to 2 years, for electricity and gas systems respectively.<br /

    Quenching of lamellar ordering in an n-alkane embedded in nanopores

    Full text link
    We present an X-ray diffraction study of the normale alkane nonadecane C_{19}H_{40} embedded in nanoporous Vycor glass. The confined molecular crystal accomplishes a close-packed structure by alignment of the rod-like molecules parallel to the pore axis while sacrificing one basic principle known from the bulk state, i.e. the lamellar ordering of the molecules. Despite this disorder, the phase transitions observed in the confined solid mimic the phase behavior of the 3D unconfined crystal, though enriched by the appearance of a true rotator phase known only from longer alkane chains.Comment: 7 pages, 3 figure

    Searching for onset of deconfinement via hypernuclei and baryon-strangeness correlations

    Get PDF
    We argue that the ratio S3=Λ3H/(3He×Λp)S_3 =\mathrm{^3_\Lambda H} / (\mathrm{^3He} \times \frac{\Lambda}{p}) is a good representation of the local correlation between baryon number and strangeness, and therefore is a valuable tool to probe the nature of the dense matter created in high energy heavy-ion collision: quark gluon plasma or hadron gas. A multiphase transport model (AMPT) plus a dynamical coalescence model is used to elucidate our arguments. We find that AMPT with string melting predicts an increase of S3S_3 with increasing beam energy, and is consistent with experimental data, while AMPT with only hadronic scattering results in a low S3S_3 throughout the energy range from AGS to RHIC, and fails to describe the experimental data.Comment: add several sentences in paragraph 2 and 3, one more paragraph (4) and one more reference (11) to address the referee's queries. accepted versio

    Relativistic semiclassical approach in strong-field nonlinear photoionization

    Get PDF
    Nonlinear relativistic ionization phenomena induced by a strong laser radiation with elliptically polarization are considered. The starting point is the classical relativistic action for a free electron moving in the electromagnetic field created by a strong laser beam. The application of the relativistic action to the classical barrier-suppression ionization is briefly discussed. Further the relativistic version of the Landau-Dykhne formula is employed to consider the semiclassical sub-barrier ionization. Simple analytical expressions have been found for: (i) the rates of the strong-field nonlinear ionization including relativistic initial and final state effects; (ii) the most probable value of the components of the photoelectron final state momentum; (iii) the most probable direction of photoelectron emission and (iv) the distribution of the photoelectron momentum near its maximum value.Comment: 13 pages, 3 figures, to be published in Phys. Rev.

    Generalized Advanced Propeller Analysis System (GAPAS). Volume 2: Computer program user manual

    Get PDF
    The Generalized Advanced Propeller Analysis System (GAPAS) computer code is described. GAPAS was developed to analyze advanced technology multi-bladed propellers which operate on aircraft with speeds up to Mach 0.8 and altitudes up to 40,000 feet. GAPAS includes technology for analyzing aerodynamic, structural, and acoustic performance of propellers. The computer code was developed for the CDC 7600 computer and is currently available for industrial use on the NASA Langley computer. A description of all the analytical models incorporated in GAPAS is included. Sample calculations are also described as well as users requirements for modifying the analysis system. Computer system core requirements and running times are also discussed

    Is the structure of 42Si understood?

    Get PDF
    A more detailed test of the implementation of nuclear forces that drive shell evolution in the pivotal nucleus \nuc{42}{Si} -- going beyond earlier comparisons of excited-state energies -- is important. The two leading shell-model effective interactions, SDPF-MU and SDPF-U-Si, both of which reproduce the low-lying \nuc{42}{Si}(21+2^+_1) energy, but whose predictions for other observables differ significantly, are interrogated by the population of states in neutron-rich \nuc{42}{Si} with a one-proton removal reaction from \nuc{43}{P} projectiles at 81~MeV/nucleon. The measured cross sections to the individual \nuc{42}{Si} final states are compared to calculations that combine eikonal reaction dynamics with these shell-model nuclear structure overlaps. The differences in the two shell-model descriptions are examined and linked to predicted low-lying excited 0+0^+ states and shape coexistence. Based on the present data, which are in better agreement with the SDPF-MU calculations, the state observed at 2150(13)~keV in \nuc{42}{Si} is proposed to be the (02+0^+_2) level.Comment: accepted in Physical Review Letter

    Dzyaloshinsky-Moriya Spin Canting in the LTT Phase of La2-x-yEuySrxCuO4

    Full text link
    The Cu spin magnetism in La2-x-yEuySrxCuO4 (x<=0.17; y<=0.2) has been studied by means of magnetization measurements up to 14 T. Our results clearly show that in the antiferromagnetic phase Dzyaloshinsky-Moriya (DM)superexchange causes Cu spin canting not only in the LTO phase but also in the LTLO and LTT phases. In La1.8Eu0.2CuO4 the canted DM-moment is about 50% larger than in pure La2CuO4 which we attribute to the larger octahedral tilt angle. We also find clear evidence that the size of the DM-moment does not change significantly at the structural transition at T_LT from LTO to LTLO and LTT. The most important change induced by the transition is a significant reduction of the magnetic coupling between the CuO2 planes. As a consequence, the spin-flip transition of the canted Cu spins which is observed in the LTO phase for magnetic field perpendicular to the CuO2 planes disappears in the LTT phase. The shape of the magnetization curves changes from the well known spin-flip type to a weak-ferromagnet type. However, no spontaneous weak ferromagnetism is observed even at very low temperatures, which seems to indicate that the interlayer decoupling in our samples is not perfect. Nonetheless, a small fraction (<15%) of the DM-moments can be remanently magnetized throughout the entire antiferromagnetically ordered LTT/LTLO phase, i.e. for T<T_LT and x<0.02. It appears that the remanent DM-moment is perpendicular to the CuO2 planes. For magnetic field parallel to the CuO2 planes we find that the critical field of the spin-flop transition decreases in the LTLO phase, which might indicate a competition between different in-plane anisotropies. To study the Cu spin magnetism in La2-x-yEuySrxCuO4, a careful analysis of the Van Vleck paramagnetism of the Eu3+ ions was performed.Comment: 22 pages, 27 figure

    Testing the Health Belief Model among African-American Gay/Bisexual Men with Self-Efficacy and Minority-Specific Contextual Variables

    Get PDF
    This study used structural equation modeling to test variations of the Health Belief Model in predicting safer sex intentions among 151 African-American gay/bisexual men. Acculturation and gay socialization were included to see if minority-specific contextual variables improved the model fit. Perceived severity, perceived vulnerability, and cues to action did not improve the model. Including self-efficacy as a mediating variable improved the model and overall prediction of safer sex intentions. Although acculturation and gay socialization were not statistically significant additions to the model, there are conceptual and practical reasons why these variables may influence safer sex intentions among African-American gay/bisexual men
    corecore