270 research outputs found

    Cellular-based Brain Pathology in the Anterior Cingulate Cortex of Males with Autism Spectrum Disorder

    Get PDF
    Autism spectrum disorder (ASD) now affects 1 in 68 children in the United States. Disorders within this spectrum share hallmark deficits in verbal and nonverbal communication, repetitive behavior, and social interaction. The cause of ASD is still unknown. Even though hundreds of genetic abnormalities have been identified in ASD, these markers account for less than 1% of all ASD cases. Researchers continue to search for pathological markers common to all or most cases of ASD. The research presented in this dissertation used a novel combination of state-of-the-art methods to investigate brain pathology in ASD. Postmortem anterior cingulate cortex (ACC) from ASD and typically developing brain donors was obtained from 2 national brain banks. The ACC was chosen for study because of its documented role in influencing behaviors characteristically disrupted in ASD. An initial study revealed elevated glial fibrillary acidic protein (GFAP) in ACC white matter from ASD brain donors compared to typically developing control donors. Laser capture microdissection was then employed to isolate specific cell populations from the ACC from ASD and control brain donors. Captured cells were used to interrogate potential gene expression abnormalities that may underlie biological mechanisms that contribute behavioral abnormalities of ASD. The expression of 4 genes associated with synaptic function, NTRK2, GRM8, SLC1A1, and GRIP1, were found to be significantly lower in ACC pyramidal neurons from ASD donors when compared to control donors. These expression abnormalities were not observed in ACC glia. Given robust evidence of neuronal and glial pathology in the ACC in ASD, a novel method for whole transcriptome analysis in single cell populations was developed to permit an unbiased analysis of brain cellular pathology in ASD. A list of genes that were differentially expressed, comparing ASD to control donors, was produced for both white matter and pyramidal neuron samples. By examining the ASD brain at the level of its most basic component, the cell, methods were developed that should allow future research to identify common cellular-based pathology of the ASD brain. Such research will increase the likelihood of future development of novel pharmacotherapy for ASD patients

    Shortened Telomere Length in White Matter Oligodendrocytes in Major Depression: Potential Role of Oxidative Stress

    Get PDF
    Telomere shortening is observed in peripheral mononuclear cells from patients with major depressive disorder (MDD). Whether this finding and its biological causes impact the health of the brain in MDD is unknown. Brain cells have differing vulnerabilities to biological mechanisms known to play a role in accelerating telomere shortening. Here, two glia cell populations (oligodendrocytes and astrocytes) known to have different vulnerabilities to a key mediator of telomere shortening, oxidative stress, were studied. The two cell populations were separately collected by laser capture micro-dissection of two white matter regions shown previously to demonstrate pathology in MDD patients. Cells were collected from brain donors with MDD at the time of death and age-matched psychiatrically normal control donors (N=12 donor pairs). Relative telomere lengths in white matter oligodendrocytes, but not astrocytes, from both brain regions were significantly shorter for MDD donors as compared to matched control donors. Gene expression levels of telomerase reverse transcriptase were significantly lower in white matter oligodendrocytes from MDD as compared to control donors. Likewise, the gene expression of oxidative defence enzymes superoxide dismutases (SOD1 and SOD2), catalase (CAT) and glutathione peroxidase (GPX1) were significantly lower in oligodendrocytes from MDD as compared to control donors. No such gene expression changes were observed in astrocytes from MDD donors. These findings suggest that attenuated oxidative stress defence and deficient telomerase contribute to telomere shortening in oligodendrocytes in MDD, and suggest an aetiological link between telomere shortening and white matter abnormalities previously described in MDD

    Neuroinflammatory Gene Expression Alterations in Anterior Cingulate Cortical White and Gray Matter of Males With Autism Spectrum Disorder

    Get PDF
    Evidence for putative pathophysiological mechanisms of autism spectrum disorder (ASD), including peripheral inflammation, blood–brain barrier disruption, white matter alterations, and abnormal synaptic overgrowth, indicate a possible involvement of neuroinflammation in the disorder. Neuroinflammation plays a role in the development and maintenance of the dendritic spines involved in glutamatergic and GABAergic neurotransmission, and also influences blood–brain permeability. Cytokines released from microglia can impact the length, location or organization of dendritic spines on excitatory and inhibitory cells as well as recruit and impact glial cell function around the neurons. In this study, gene expression levels of anti- and pro-inflammatory signaling molecules, as well as oligodendrocyte and astrocyte marker proteins, were measured in both gray and white matter tissue in the anterior cingulate cortex from ASD and age-matched typically developing (TD) control brain donors, ranging from ages 4 to 37 years. Expression levels of the pro-inflammatory gene, HLA-DR, were significantly reduced in gray matter and expression levels of the anti-inflammatory gene MRC1 were significantly elevated in white matter from ASD donors as compared to TD donors, but neither retained statistical significance after correction for multiple comparisons. Modest trends toward differences in expression levels were also observed for the pro-inflammatory (CD68, IL1β) and anti-inflammatory genes (IGF1, IGF1R) comparing ASD donors to TD donors. The direction of gene expression changes comparing ASD to TD donors did not reveal consistent findings implicating an elevated pro- or anti-inflammatory state in ASD. However, altered expression of pro- and anti-inflammatory gene expression indicates some involvement of neuroinflammation in ASD. Lay Summary: The anterior cingulate cortex is an integral brain region in modulating social behaviors including nonverbal communication. The study found that inflammatory gene expression levels were altered in this brain region. We hypothesize that the inflammatory changes in this area could impact neuronal function. The finding has future implications in using these molecular markers to identify potential environmental exposures and distinct cell differences in autism

    Elevated Gene Expression of Glutamate Receptors in Noradrenergic Neurons From the Locus Coeruleus in Major Depression

    Get PDF
    Glutamate receptors are promising drug targets for the treatment of urgent suicide ideation and chronic major depressive disorder (MDD) that may lead to suicide completion. Antagonists of glutamatergic NMDA receptors reduce depressive symptoms faster than traditional antidepressants, with beneficial effects occurring within hours. Glutamate is the prominent excitatory input to the noradrenergic locus coeruleus (LC). The LC is activated by stress in part through this glutamatergic input. Evidence has accrued demonstrating that the LC may be overactive in MDD, while treatment with traditional antidepressants reduces LC activity. Pathological alterations of both glutamatergic and noradrenergic systems have been observed in depressive disorders, raising the prospect that disrupted glutamate-norepinephrine interactions may be a central component to depression and suicide pathobiology. This study examined the gene expression levels of glutamate receptors in post-mortem noradrenergic LC neurons from subjects with MDD (most died by suicide) and matched psychiatrically normal controls. Gene expression levels of glutamate receptors or receptor subunits were measured in LC neurons collected by laser capture microdissection. MDD subjects exhibited significantly higher expression levels of the NMDA receptor subunit genes, GRIN2B and GRIN2C, and the metabotropic receptor genes, GRM4 and GRM5, in LC neurons. Gene expression levels of these receptors in pyramidal neurons from prefrontal cortex (BA10) did not reveal abnormalities in MDD. These findings implicate disrupted glutamatergic-noradrenergic interactions at the level of the stress-sensitive LC in MDD and suicide, and provide a theoretical mechanism by which glutamate antagonists may exert rapid antidepressant effects

    Antidepressant-Like Actions of Inhibitors of Poly(ADP-Ribose) Polymerase in Rodent Models

    Get PDF
    Many patients suffering from depressive disorders are refractory to treatment with currently available antidepressant medications, while many more exhibit only a partial response. These factors drive research to discover new pharmacological approaches to treat depression. Numerous studies demonstrate evidence of inflammation and elevated oxidative stress in major depression. Recently, major depression has been shown to be associated with elevated levels of DNA oxidation in brain cells, accompanied by increased gene expression of the nuclear base excision repair enzyme, poly(ADP-ribose) polymerase-1. Given these findings and evidence that drugs that inhibit poly(ADP-ribose) polymerase-1 activity have antiinflammatory and neuroprotective properties, the present study was undertaken to examine the potential antidepressant properties of poly(ADP-ribose) polymerase inhibitors

    SUPPORT-AF: Piloting a Multi-Faceted, Electronic Medical Record-Based Intervention to Improve Prescription of Anticoagulation

    Get PDF
    Background: Only 50% of eligible atrial fibrillation ( AF ) patients receive anticoagulation ( AC ). Feasibility and effectiveness of electronic medical record (EMR)-based interventions to profile and raise provider AC percentage is poorly understood. The SUPPORT-AF (Supporting Use of AC Through Provider Profiling of Oral AC Therapy for AF) study aims to improve rates of adherence to AC guidelines by developing and delivering supportive tools based on the EMR to providers treating patients with AF. Methods and Results: We emailed cardiologists and community-based primary care providers affiliated with our institution reports of their AC percentage relative to peers. We also sent an electronic medical record-based message to these providers the day before an appointment with an atrial fibrillation patient who was eligible but not receiving AC . The electronic medical record message asked the provider to discuss AC with the patient if he or she deemed it appropriate. To assess feasibility, we tracked provider review of our correspondence. We also tracked the change in AC for intervention providers relative to alternate primary care providers not receiving our intervention. We identified 3786, 1054, and 566 patients cared for by 49 cardiology providers, 90 community-based primary care providers, and 88 control providers, respectively. At baseline, the percentage of AC was 71.3%, 63.5%, and 58.3% for these 3 respective groups. Intervention providers reviewed our e-mails and electronic medical record messages 45% and 96% of the time, respectively. For providers responding, patient refusal was the most common reason for patients not being on AC (21%) followed by high bleeding risk (19%). At follow-up 10 weeks later, change in AC was no different for either cardiology or community-based primary care providers relative to controls (0.2% lower and 0.01% higher, respectively). Conclusions: Our intervention profiling AC was feasible, but not sufficient to increase AC in our population

    Elevated DNA Oxidation and DNA Repair Enzyme Expression in Brain White Matter in Major Depressive Disorder

    Get PDF
    Background: Pathology of white matter in brains of patients with major depressive disorder (MDD) is well-documented, but the cellular and molecular basis of this pathology are poorly understood. Methods:Levels of DNA oxidation and gene expression of DNA damage repair enzymes were measured in Brodmann area 10 (BA10) and/or amygdala (uncinate fasciculus) white matter tissue from brains of MDD (n=10) and psychiatrically normal control donors (n=13). DNA oxidation was also measured in BA10 white matter of schizophrenia donors (n=10) and in prefrontal cortical white matter from control rats (n=8) and rats with repeated stress-induced anhedonia (n=8). Results:DNA oxidation in BA10 white matter was robustly elevated in MDD as compared to control donors, with a smaller elevation occurring in schizophrenia donors. DNA oxidation levels in psychiatrically affected donors that died by suicide did not significantly differ from DNA oxidation levels in psychiatrically affected donors dying by other causes (non-suicide). Gene expression levels of two base excision repair enzymes, PARP1 and OGG1, were robustly elevated in oligodendrocytes laser captured from BA10 and amygdala white matter of MDD donors, with smaller but significant elevations of these gene expressions in astrocytes. In rats, repeated stress-induced anhedonia, as measured by a reduction in sucrose preference, was associated with increased DNA oxidation in white, but not gray, matter. Conclusions:Cellular residents of brain white matter demonstrate markers of oxidative damage in MDD. Medications that interfere with oxidative damage or pathways activated by oxidative damage have potential to improve treatment for MDD

    Histone Modifications at Human Enhancers Reflect Global Cell-Type-Specific Gene Expression

    Get PDF
    The human body is composed of diverse cell types with distinct functions. Although it is known that lineage specification depends on cell-specific gene expression, which in turn is driven by promoters, enhancers, insulators and other cis-regulatory DNA sequences for each gene1, 2, 3, the relative roles of these regulatory elements in this process are not clear. We have previously developed a chromatin-immunoprecipitation-based microarray method (ChIP-chip) to locate promoters, enhancers and insulators in the human genome4, 5, 6. Here we use the same approach to identify these elements in multiple cell types and investigate their roles in cell-type-specific gene expression. We observed that the chromatin state at promoters and CTCF-binding at insulators is largely invariant across diverse cell types. In contrast, enhancers are marked with highly cell-type-specific histone modification patterns, strongly correlate to cell-type-specific gene expression programs on a global scale, and are functionally active in a cell-type-specific manner. Our results define over 55,000 potential transcriptional enhancers in the human genome, significantly expanding the current catalogue of human enhancers and highlighting the role of these elements in cell-type-specific gene expression

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research
    • …
    corecore