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Shortened telomere length in white matter
oligodendrocytes in major depression:
potential role of oxidative stress

Attila Szebeni1, Katalin Szebeni1, Timothy DiPeri1, Michelle J. Chandley1,
Jessica D. Crawford1, Craig A. Stockmeier2 and Gregory A. Ordway1
1Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
2Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA

Abstract

Telomere shortening is observed in peripheral mononuclear cells from patients with major depressive disorder
(MDD). Whether this finding and its biological causes impact the health of the brain in MDD is unknown. Brain
cells have differing vulnerabilities to biological mechanisms known to play a role in accelerating telomere short-
ening. Here, two glia cell populations (oligodendrocytes and astrocytes) known to have different vulnerabilities
to a key mediator of telomere shortening, oxidative stress, were studied. The two cell populations were separ-
ately collected by laser capture micro-dissection of two white matter regions shown previously to demonstrate
pathology in MDD patients. Cells were collected from brain donors with MDD at the time of death and age-
matched psychiatrically normal control donors (N=12 donor pairs). Relative telomere lengths in white matter
oligodendrocytes, but not astrocytes, from both brain regions were significantly shorter for MDD donors as com-
pared to matched control donors. Gene expression levels of telomerase reverse transcriptase were significantly
lower in white matter oligodendrocytes fromMDD as compared to control donors. Likewise, the gene expression
of oxidative defence enzymes superoxide dismutases (SOD1 and SOD2), catalase (CAT) and glutathione per-
oxidase (GPX1) were significantly lower in oligodendrocytes from MDD as compared to control donors. No
such gene expression changes were observed in astrocytes from MDD donors. These findings suggest that at-
tenuated oxidative stress defence and deficient telomerase contribute to telomere shortening in oligodendrocytes
in MDD, and suggest an aetiological link between telomere shortening and white matter abnormalities
previously described in MDD.

Received 7 January 2014; Reviewed 7 February 2014; Revised 2 April 2014; Accepted 4 April 2014;
First published online 26 June 2014

Key words: Astrocytes, major depression, oligodendrocytes, suicide, telomere.

Introduction

The aetiology of depression remains theoretical and
treatment advances have been few over the past
30 years. MDD is associated with a high rate of suicide
and significantly increases the risk of numerous medical
illnesses. Interestingly, MDD is highly comorbid with
many diseases associated with advanced age such as
cardiovascular disease, stroke, diabetes, osteoporosis, dia-
betes, immune impairments and dementia (Wolkowitz
et al., 2011b). In fact, evidence is mounting that indicates
MDD is associated with advanced cellular aging
(Douillard-Guilloux et al., 2013; Kinser and Lyon, 2013).
Numerous studies report shorter telomere lengths in

peripheral blood mononuclear cells from MDD patients
(Simon et al., 2006; Wolkowitz et al., 2010; Wikgren
et al., 2012; Verhoeven et al., 2013). Telomeres are nucleo-
protein complexes of guanine-rich DNA at the end of
chromosomes that do not encode any gene product, but
are essential for genome stability and the protection of
chromosome ends from degradation or recombination
(Blackburn, 2000). When telomeric DNA reaches a criti-
cally short length, as in cells undergoing repeated mitotic
divisions, the cells become susceptible to senescence
or apoptosis (Blackburn, 2000; Blackburn et al., 2006).
Telomere shortening has been linked to a variety of
stressors and stress-related factors such as metabolic
stress (Epel, 2009; Epel et al., 2010), chronic life stress
(Puterman et al., 2010), psychological stress (Malan
et al., 2011), cumulative childhood stress (O’Donovan
et al., 2011), inflammation (Kiecolt-Glaser et al., 2011)
and glucocorticoids (Haussmann et al., 2012). Many, if
not all of these stress factors are also strongly associated
with MDD (Bonde, 2008; Maes et al., 2011; Wolkowitz
et al., 2011b; Zunszain et al., 2011; Krishnadas and
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Cavanagh, 2012; Frodl and O’Keane, 2013). Hence,
shortened telomeres in MDD have been proposed to
be markers of accelerated cell aging as a result of expo-
sure to life stressors (Simon et al., 2006; Wolkowitz
et al., 2010).

The molecular mechanisms responsible for telomere
shortening in MDD or as a result of psychological stress
are unknown, although elevated levels of oxidative
stress as a result of inflammation or stress hormones
seems to be a likely mediator (Epel, 2009; Epel et al.,
2010; Puterman et al., 2010). Due to its high level of oxi-
dative metabolism, the brain is inherently vulnerable to
oxidative stress and produces chemically reactive mol-
ecules containing oxygen (oxygen ions, peroxides,
peroxynitrite), otherwise known as reactive oxygen spe-
cies (ROS) and reactive nitrogen species (RNS). ROS
and RNS are intracellular mediators of stress responses
but with age increasingly contribute to cellular damage,
reacting with various biological targets such as pro-
teins, fatty acids, RNA and DNA (Radak et al., 2011;
Aschbacher et al., 2013). Oxidative stress effects on
DNA includes attack on oxidation-sensitive guanine
nucleotides in guanine-rich telomere DNA, resulting
in telomere shortening (Von Zglinicki and Martin-Ruiz,
2005).

One might assume that the deleterious effects of
telomere shortening may contribute to brain pathology
associated with stress-related disorders such as MDD.
For example, accelerated telomere shortening as a result
of life stresses could contribute to loss of susceptible
cells in the brain, an intriguing possibility because nu-
merous researchers have reported reduced numbers
of cells in post-mortem brains from MDD subjects
(Ongür et al., 1998; Duman et al., 2000; Rajkowska,
2000; Rajkowska and Miguel-Hidalgo, 2007). However,
to our knowledge there are only two studies that
have examined telomere lengths in post-mortem brain
tissues from individuals with stress-related psychiatric
disorders (Teyssier et al., 2010; Zhang et al., 2010). In
both of these studies, telomere lengths were similar in
psychiatric disorders including MDD and normal control
subjects, suggesting that telomere shortening in MDD
does not negatively impact cellular health of the brain.
However, cells in the brain are likely to have differing
susceptibilities to stress-induced telomere shortening.
For example, astrocytes are more resistant to oxidative
stress damage as compared to oligodendrocytes
(Desagher et al., 1996; Juurlink, 1997; Wilson, 1997; Juur-
link et al., 1998). Previous research reporting telomere
lengths in post-mortem brain tissues utilized admixtures
of cells from a gross dissection of brain and the lengths
reported would be expected to be an average of telomere
lengths among the multitude of cell types collected in the
dissection.

In the present study, we used laser capture micro-
dissection to collect two glia cell populations from
post-mortem brain tissues to examine telomere lengths

in MDD. White matter regions of the brain were chosen
for study because of the ease of collecting glia cells
from white matter. Two separate populations of glia,
astrocytes and oligodendrocytes, were captured from
white matter tracts in the frontal (Brodmann area 10,
BA10) and temporal lobe (uncinate fasciculus; UF).
These brain areas were chosen for study because struc-
tural magnetic resonance imaging studies have demon-
strated white matter abnormalities in these regions in
MDD subjects, presumably reflecting cellular pathology
(Tham et al., 2011). In the same cells, we also measured
the expression of five genes whose protein products
maintain telomere length (telomerase reverse transcrip-
tase, TERT) or protect cells and oxidation-sensitive telo-
meres from ROS (cytoplasmic superoxide dismutase,
SOD1; mitochondrial superoxide dismutase, SOD2;
catalase, CAT; intracellular glutathione peroxidase,
GPX1). Findings here suggest that attenuated oxidative
stress defence and deficient telomerase could contribute
to telomere shortening in brain oligodendrocytes in
MDD.

Method

Subjects and tissue acquisition

Human brain tissues were obtained at autopsy at the
Medical Examiner’s Office of Cuyahoga Country (USA)
using an approved Institutional Review Board protocol.
The details of the collection and psychiatric autopsy are
found in previous publications (Ordway et al., 2009;
Chandley et al., 2013). Briefly, Axis I diagnoses were
made according to the Diagnostic and Statistical
Manual of Mental Disorders (4th ed.) (DSM-IV;
APA, 1994) by a trained interviewer using the Structured
Clinical Interview for DSM Axis I Disorders modified for
third-person reporting (First et al., 1996). Demographic
information of all brain donors is shown in Table 1;
diagnoses were active at the time of death. Psychiatrically
normal control and MDD donors were arranged
into subject pairs, matched as closely as possible for
age, gender, post-mortem interval, tissue pH and smok-
ing history. Two MDD subjects had comorbid alcohol
abuse disorder and one MDD subject had comorbid al-
cohol dependence. One of the comorbid alcohol abuse
subjects was used only in the assay of BA10 cortex
white matter cells. See Supplement Methods for further
description.

Immunohistochemistry and laser capture
micro-dissection

Frozen temporal lobe tissue (containing the UF, and
part of the amygdala and hippocampus) or right BA10
were sectioned (10 μM) with a cryostat microtome at
−20 °C (Leica CM 3050 S). GFAP immunostaining of
tissue sections was conducted as previously described
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(Ordway et al., 2009). CNP immunostaining was per-
formed the same as for GFAP except all incubations
occurred at 37 °C. LCM was performed on the Veritas
Microdissection Instrument model 704 (Molecular
Devices) with CapSure Macro caps (Molecular Devices)
as reported previously (Ordway et al., 2009) with modifi-
cation (see Supplement to Methods). For telomere length
measurements, H2O2 was omitted from the immuno-
staining. Two captures were performed, one for DNA
and one for RNA because the isolation methods for
RNA and DNA differed. For both captures, 500 GFAP+
astrocytes and 500 CNP+ oligodendrocytes were collected
by LCM in <2 h, separately from UF and BA10 white

matter (Ordway et al., 2009; see Fig. 1). See Supplement
to Methods for further description.

Genomic DNA purification from LCM sample

Genomic DNA was isolated from captured cells using a
silica-gel membrane based QIAamp DNA Micro Kit
(Qiagen, USA) as described previously (Shammas et al.,
2008) with modification. To prevent generation of abasic
sites on the DNA and to minimize oxidative damage,
50 μM phenyl-tert-butyl nitron (SIGMA, USA) was supple-
mented (O’Callaghan et al., 2008). For the lysis of cells
on LCM caps, the original (56 °C for 10min) high

Table 1. Subject demographic information

ID Age Gender pH RINa PMIb Smoker Toxicology Tissue

Controls
RR 37 M 6.47 7.3 17 No NDDc UF, BA10
KK 43 M 6.56 6.9 23 No, hxd propoxyphene, oxycodone UF, BA10
BB 52 M 6.28 6.4 17 No NDD UF, BA10
O 78 F 6.42 7.4 11 No NDD UF, BA10
KS82 47 M 6.10 7.1 25 No Propoxyphene UF, BA10
KS59 46 M 6.95 6.8 19 No NDD UF, BA10
ZZ 19 M 6.76 7.0 11 No NDD UF
A-1 82 M 6.72 6.7 16 No NDD UF
FF 27 M 6.88 8.4 17 Yes NDD UF, BA10
KS31 59 M 6.79 7.6 6 No, hx Lidocaine UF, BA10
KS43 67 M 6.95 7.2 24 Yes NDD UF, BA10
2A 47 M 6.80 7.1 17 Yes NDD UF
KS21 48 M 6.98 7.4 9 Yes NDD BA10
KS23 58 M 6.78 7.7 21 Yes NDD BA10
Mean 51 6.67 7.21 16.6
S.E.M. 5 0.07 0.13 1.5

MDD
KS56 37 M 6.60 6.9 31 No Ethanol UF, BA10
KS58 42 M 6.50 6.8 27 ? CO UF, BA10
DD 52 M 6.48 5.8 18 No CO UF, BA10
P 75 F 6.23 7.5 30 Yes CO UF, BA10
D 47 M 6.84 7.0 11 No Ethanol UF, BA10
6A 47 M 6.26 7.5 24 No NDD UF, BA10
KS64 20 M 6.70 6.7 20 No Diphenhydramine UF
1C 86 M 6.23 7.0 21 hx NDD UF
GG 30 M 6.91 8.0 18 Yes NDD UF, BA10
KS32 60 M 6.32 6.8 20 Yes Ethanol UF, BA10
WW 65 M 6.20 6.7 30 Yes Codeine UF, BA10
KS66 48 M 6.60 6.6 17 No NDD UF
KS12 41 M 6.24 6.7 19 Yes Chlorpheniramine BA10
KS24 64 M 6.80 7.2 26 Yes Ethanol BA10
Mean 51.00 6.49 6.94 22.2
S.E.M. 5 0.07 0.14 1.6
p valuee 0.97 0.08 0.17 0.02

a RNA integrity number generated by the Agilent 2100e.
b Post-mortem interval.
c No drugs detectable.
d History.
e Results of an independent t-test comparing MDD group to control group.
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temperature of the kit protocol was reduced to 37 °C for
3 h. DNA samples were stored at −80 °C until required.

RNA purification and end-point PCR

Total RNA was isolated from laser-captured cells using
the RNAqueous Micro Kit (includes DNase treatment;
Ambion, USA) and kept at −80 °C. Reverse transcription
was performed as published earlier (Ordway et al.,
2009). End-point PCR was performed as previously
described using three reference genes (glyceraldehyde-3-
phosphate dehydrogenase, GAPDH; 18S ribosomal 1
RNA, RNA18S1; ubiquitin C, UBC) to normalize target
gene expression data (Ordway et al., 2009; Chandley
et al., 2013). PCR amplicons were collected during the
linear range of amplification as determined for each pri-
mer set in optimization experiments, and were quantified

on an Agilent 2100e Bioanalyser (Agilent Technologies,
USA). DNA 1000 Chips (Agilent Technologies) with a
quantitative range of 0.1–50 ng/μl were used with the
Bioanalyser. All gene primers were designed using Gen-
Bank accession numbers as shown in Table S1. See Sup-
plement Methods for further details.

Telomere length analysis with end-point PCR

Genomic DNA from LCM samples was dried to 6.5 μl
in a SpeedVac centrifuge and 3×1 μl was used for telo-
mere length measurement and the other 3×1 μl was
used for single copy gene (albumin, ALB) measurement
(Cawthon, 2002). Because small amounts of DNA are
available from LCM, end-point PCR was used to quantify
relative telomere length as described previously (Ordway
et al., 2009). Average relative telomere length as

(a) (b)

(c) (d )

(e) (f )

Fig. 1. Laser capture micro-dissection of astrocytes and oligodendrocytes. Panels A (before LCM) and B (after LCM) show the
region of BA10 white matter where cells were captured (magnification 2× ). Panel C shows (10× ) captured astrocytes on the LCM
cap from the area of the rectangle in Panel A. Panel D is an image (60× ) of GFAP immunostained astrocytes (arrows pointing to
astrocytes). Panel E is an image (approximately 2×) of a CNP immunostained section showing the location of the uncinate
fasciculus (UF), where oligodendrocytes were captured (Am, amygdala; Hi, anterior hippocampus). Panel E is an image (60x) of
CNP immunostained oligodendrocytes (arrows pointing to oligodendrocytes). Note that slides were not coverslipped and appear as
they do to the user during cell capture.
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represented by the telomere repeat copy number to single
copy gene (ALB) copy number (T/A) ratio was deter-
mined using a modified version of a previously described
real-time PCR assay (Cawthon, 2002).

Data analysis

Telomere data was analysed using a one-way between
groups analysis of covariance. The independent variable
was the diagnostic group; the dependent variables were
T/A ratios and TERT gene expression levels. Age was
used as a covariate based on the effects of age on telomere
length (Blackburn et al., 2006) and TERT expression (see
below). Gene expression levels of oxidative stress defence
enzymes (SOD1, SOD2, GPX and CAT) were analysed
using a multivariate analysis of variance. Appropriate
preliminary checks were conducted to examine the poten-
tial violation of assumptions of analysis of variance.
Analysis of variance was performed using IBM SPSS
Statistics (version 21.0M). Pearson correlations were per-
formed using GraphPad Prism (version 5.00; GraphPad
Software, Inc.).

Results

Telomere lengths

Adjusting for age, T/A values (representing relative
telomere lengths) were significantly lower in UF oligo-
dendrocytes in MDD donors as compared to control
donors (F=25.6, p<0.0005; Fig. 2a). Likewise, T/A values
were significantly lower in oligodendrocytes captured

from BA10 white matter comparing MDD to control
donors (F=9.02, p=0.007; Fig. 2a). There was a statistically
significant relationship between the covariate age and
T/A values in UF oligodendrocytes (F=8.28, p=0.009),
but not BA10 white matter oligodendrocytes (F=0.377;
p=0.55). In contrast, T/A values in astrocytes were not
significantly different comparing MDD to control donors
in either the UF (F=0.578, p=0.46) or in BA10 white mat-
ter (F=0.354; p=0.56; Fig. 2b). Likewise, there were no
significant relationships between age and T/A values
in astrocytes (UF, F=2.52, p=0.13; BA10 white matter,
F=0.377, p=0.55).

Telomerase reverse transcriptase

Telomerase reverse transcriptase (TERT ) expression was
measured using cells captured from the same donors as
above. Adjusting for age (see below), TERT expression
in oligodendrocytes was significantly lower in MDD
as compared to control donors (UF: F=23.9, p<0.0005,
Fig. 2c; BA10 white matter: F=12.5, p=0.002, Fig. 2c). A
robust correlation was observed between age and TERT
expression in UF oligodendrocytes (F=59.8, p<0.0005),
but not in BA10 white matter oligodendrocytes (F=0.90,
p=0.36). TERT expression was lower in astrocytes com-
pared to oligodendrocytes. There was no significant
difference between donor groups in TERT expression in
UF astrocytes (Fig. 2d; F=0.03, p=0.86); TERT expression
was undetectable in BA10 white matter astrocytes. Age
significantly correlated with TERT expression in UF astro-
cytes (F=4.65, p<0.05).
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Fig. 2. Relative telomere lengths (A and B) and TERT expression (C and D) in laser captured oligodendrocytes and astrocytes from
uncinate fasciculus (UF) and BA10 white matter from matched pairs of psychiatrically normal control donors (open symbols) and
MDD donors (closed symbols). TERT expression was normalized using the averaged expression of stable reference genes (GAPDH,
RNA18S1 and UBC; see Supplemental Fig. 1). p values from the analysis of covariance with age as the covariate are shown.
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Oxidative stress defence enzymes

The expression of four antioxidant enzyme genes,
SOD1, SOD2, GPX1 and CAT were measured using
the same RNA samples as above for TERT expression.
Gene expression levels of all four antioxidant enzymes
were significantly lower in UF oligodendrocytes of
MDD donors as compare to control donors (Fig. 3a–d;
SOD1, F=19.7, p<0.0005; SOD2, F=20.5, p<0.0005;
GPX1, F=19.2, p<0.0005; CAT, F=15.4, p=0.001). Similar
MDD-associated reductions in antioxidant gene expres-
sions were observed in oligodendrocytes captured from
BA10 white matter (Fig. 3a–d; SOD1, F=21.2, p<0.0005;
SOD2, F=46.8, p<0.0005; GPX1, F=25.4, p<0.0005;
CAT, F=21.3, p<0.0005). In contrast, gene expression
levels of antioxidant enzymes in UF astrocytes were simi-
lar in control and MDD donors (Fig. 4a–d; SOD1, F=2.23,
p=0.09; SOD2, F=0.00, p=0.97; GPX1, F=0.63, p=0.44;
CAT, F=1.43, p=0.24). Likewise, expression levels of
these genes in BA10 white matter astrocytes were not
significantly different comparing control to MDD donors
(Fig. 4a–d; SOD1, F=0.01, p=0.91; SOD2, F=0.76, p=0.40;
GPX1, F=0.27, p=0.61; CAT, F=0.36, p=0.56).

Reference genes and analysis of potential confounds
and correlates

There were no significant differences between control and
MDD groups with regard to age, RNA quality as assessed
by RIN, and brain tissue pH (Table 1). PMI was sig-
nificantly longer for MDD subjects (p<0.05; Table 1). No
differences in expression levels of reference genes were

observed comparing normal control and MDD donor
groups (Table S2, Fig S1). Possible influences of age,
PMI, pH and RIN values were evaluated on target
and reference gene expression levels (Table S3). Given
the number (128) of correlations examined, a p<0.01
was considered as a potential confound. There were no
consistent effects of any of these factors on gene ex-
pression levels that spanned across cell types or brain
regions. Age significantly correlated with TERT ex-
pression levels in oligodendrocytes and was used as a
covariate in the analyses of these data as noted above.
RIN significantly correlated with the expression of
SOD2 only in UF oligodendrocytes (r2=0.31, p=0.005).
Using RIN as a covariate in the ANOVA for SOD2 ex-
pression levels in UF oligodendrocytes did not alter the
overall outcome of the statistical comparison of control
and MDD groups (F14.8, p=0.001). pH values correlated
significantly with GPX1 expression levels only in BA10
white matter oligodendrocytes (r2=0.32, p=0.006), and
using pH as a covariate in the ANOVA did not alter the
overall outcome of the analysis of control and MDD
groups (F=15.1, p=0.001). As an additional check, pH,
PMI, and RIN were used as covariates in the ANOVA (re-
gardless of the results of Pearson correlation analysis) of
all other gene expressions as well as the T/A values
from oligodendrocytes and astrocytes and statistical con-
clusions were unaltered by these analyses.

For MDD cases where known (seven cases for BA10
white matter; ten cases for UF), the duration of illness
did not correlate with the T/A ratios in both cell types
in both brain regions (Table S4). There was no significant
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Fig. 3. Gene expression of oxidative stress defence enzymes in oligodendrocytes laser captured from uncinate fasciculus (UF) and
BA10 white matter of psychiatrically normal control donors (open symbols) and MDD donors (closed symbols). Gene expression
levels are normalized to the average of stable reference genes as noted in Fig. 1. p values from the multivariate analysis of variance
are shown.
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correlation between duration of illness and the gene
expressions of TERT and the antioxidant enzymes in
both cell types and in both brain regions (Table S4).
Given the reductions in gene expressions and relative telo-
mere lengths in MDD subjects, the potential correlation of
relative telomere length to expression levels of TERT and
the antioxidant enzymes was examined, but there were
no significant correlations (Table S5).

As noted in the Method section above, three MDD
subjects had alcohol-related disorders. To consider
the possibility that chronic alcohol ingestion might affect
telomere length or gene expressions, all data were re-
analysed removing the three subjects with alcohol-related
comorbidity. The statistical conclusions as reported above
were not affected by removal of these subjects (see
Table S6).

Discussion

Relative telomere lengths were significantly lower in
oligodendrocytes captured from MDD donors in both
the UF and white matter of the prefrontal cortex (BA10)
as compared to healthy age-matched control donors.
In contrast, relative telomere lengths in astrocytes from
the same brain regions were similar in MDD and control
donors. Recent studies demonstrate shortened telomeres
in leukocytes of MDD patients, and also in subjects
exposed to extended periods of psychological stress
(Hoen et al., 2011; Wolkowitz et al., 2011a; Garcia-Rizo
et al., 2013; Puterman et al., 2013). However, telomere
shortening was not observed previously in post-mortem

brain tissues from MDD (Teyssier et al., 2010; Zhang
et al., 2010). These past brain findings have been used
to reason that brain cells may not be susceptible to the
same factors that contribute to telomere shortening in
leukocytes. However, tissues examined in these earlier
brain studies were grossly dissected and would be
expected to contain many cell types (e.g. neurons, glia,
vascular and immune cells). Different cell types are
unequally vulnerable to factors, such as oxidative stress,
that contribute to shortened telomeres. The present
study is the first to examine telomere length in single
cell populations from post-mortem human brain in any
psychiatric disorder, and our findings demonstrate that
telomere shortening occurs in brain white matter oligo-
dendrocytes in MDD as has been shown in leukocytes.

A mechanism that may contribute to telomere short-
ening in brain oligodendrocytes in MDD is altered ex-
pression of telomerase. Telomerase is a nuclear enzyme
that maintains telomere length through the addition
of nucleotides. TERT is the reverse transcriptase enzyme
component of telomerase. We found the expression of
TERT in oligodendrocytes, but not astrocytes, to be sig-
nificantly lower in MDD subjects as compared to control
subjects. Lowered TERT expression could translate to re-
duce telomerase activity, ultimately resulting in shorter
telomeres. However, it is worth noting that Wolfkowitz
and co-workers demonstrated elevation of telomerase ac-
tivity in peripheral blood mononuclear cells from MDD
patients as compared to control subjects (Wolkowitz
et al., 2012), despite shorter telomeres in those MDD
patients (Wolkowitz et al., 2011a). Unfortunately, we
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were unable to perform telomerase activity measure-
ments given the minute amounts of tissue obtained
from LCM of oligodendrocytes. Nevertheless, the lower
expression of TERT in MDD implicates perturbed regu-
lation of telemorase in MDD oligodendrocytes.

Telomere shortening is considered a biomarker for
accelerated cellular aging resulting from cumulative
stress exposure (Von Zglinicki and Martin-Ruiz, 2005;
Hartmann et al., 2010; Wolkowitz et al., 2010, 2011a;
Hoen et al., 2011; Malan et al., 2011; Wikgren et al.,
2012). The molecular mechanisms contributing to telo-
mere shortening in leukocytes in MDD patients are un-
certain, but are assumed to be similar to mechanisms at
play in brain oligodendrocytes. Elevated exposure
to ROS may facilitate leukocyte telomere shortening in
depressive disorders. Guanine nucleotides, abundant in
telomeric DNA, are particularly susceptible to oxidation
reactions induced by ROS, resulting in activation of
DNA damage repair mechanisms that contribute to telo-
mere shortening (Rhee et al., 2011). Numerous studies
demonstrate evidence of elevation of ROS in depressive
disorders (Leonard and Maes, 2012), including increased
oxidation of guanine nucleotides (Irie et al., 2005;
Forlenza and Miller, 2006; Maes et al., 2009), in peripheral
tissues of depressed patients.

To investigate the potential role of oxidative mech-
anisms in telomere shortening in MDD oligodendrocytes,
the expression of oxidative stress defence genes SOD1,
SOD2, GPX1 and CAT were measured. SOD1 and SOD2
catalyze dismutation of superoxide anions to H2O2 and
O2 in the cytosol and mitochondria, respectively. H2O2

is further detoxified by CAT and GPX1 to H2O and O2.
Gene expression levels of all four oxidative stress defence
enzymes were significantly lower in oligodendrocytes
from MDD donors as compared to normal control
donors. GPX and SOD activities are reduced by glucocor-
ticoids (Pereira et al., 1995; McIntosh et al., 1998a, b;
Schmidt et al., 2005; Verhaeghe et al., 2009; You et al.,
2009) and it is conceivable that reduced GPX and
SOD expression in MDD oligodendrocytes is secondary
to elevated cortisol or related stress hormones widely
believed to accompany depression. However, an ex-
planation for down-regulation of GPX and SOD ex-
pression in oligodendrocytes but not astrocytes cannot
be provided. Regardless of the potential association
with stress hormones, white matter oligodendrocytes
in MDD subjects demonstrate accelerated aging through
telomere shortening that may have resulted from patho-
logic compensation of cellular mechanisms designed to
protect the telomere from oxidative stress-induced
degradation.

Brain astrocytes may be more resistant to oxidative
stress damage when compared to oligodendrocytes.
Greater resistance of astrocytes to reactive oxygen species
has been demonstrated previously and is thought to
be derived from low iron content, high glutathione
concentration, and high glutathione peroxidase activity

(Juurlink et al., 1998). In contrast, oligodendrocytes
appear to be vulnerable to intracellular free radicals
produced during intensive cell respiration. Oligo-
dendrocytes have extensive lipid membranes that are a
primary target of free radicals (Kim and Kim, 1991;
Thorburne and Juurlink, 1996). Furthermore, production
of lipids during myelination requires peroxisome activity
that generates H2O2 and increases the oxidative load
on oligodendrocytes, cells with lower glutathione re-
ductase enzyme activity than astrocytes (French et al.,
2009).

It is intriguing to consider the present findings with re-
gard to the role of white matter pathology in the genesis
or sustention of MDD. White matter pathologies have
been demonstrated using either neuroimaging methods
in living MDD patients or post-mortem tissues from
MDD donors (Tham et al., 2011). For example, white
matter hyper-intensities on MRI scans are more prevalent
in patients with MDD (Nobuhara et al., 2006; Potter et al.,
2007; Taylor et al., 2007; Köhler et al., 2010; Tham et al.,
2011). Low expression of multiple oligodendrocyte
genes has been shown in post-mortem temporal cortex
from MDD donors (Aston et al., 2005). Reduced myelin
staining (Regenold et al., 2007) and reduced density of
oligodendrocytes (Uranova et al., 2004) have been ob-
served in post-mortem prefrontal cortex in MDD. The
present findings of oligodendrocyte telomere shortening
in MDD, possibly induced by oxidative stress, may be
aetiologically linked to these white matter pathologies
in MDD.

Study limitation

Sample sizes in the present study are relatively small
and larger scale studies are warranted. For the analysis
of antioxidant enzymes and TERT, sufficient amounts of
laser captured oligodendrocytes were not obtainable
to perform quantitative immunoblotting or to analyse
enzyme activities. Hence, interpretations assume that
changes gene expression predict biological outcomes,
such as changes in enzyme activity. However, changes
in gene expression do not always parallel changes in pro-
tein levels derived from the same gene, just as changes in
protein levels do not always align with changes in the
function of that protein because function can be modified
by post-translational modifications or by changes in intra-
cellular trafficking. Nevertheless, it seems reasonable to
assume that changes in gene expression do predict the
presence of a perturbed or abnormal cellular process.
We were unable to obtain sufficiently strong immuno-
stains of tissue sections to analyse levels antioxidant
enzymes in white matter. It would be interesting to
know whether the number of oligodendrocytes in white
matter was lower in MDD subjects than controls.
However, it is noteworthy that for LCM, reduced gene
expressions in MDD cannot be accounted for by reduced
cell numbers because the same number of cells are
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captured from MDD and control subjects for the RNA
isolations. We did not have blood from subjects of this
study to determine whether leukocytes from the same
MDD subjects had reduced telomere lengths. Finally,
while shortened telomere lengths were accompanied by
reductions in TERT and antioxidant enzyme gene expres-
sions in MDD oligodendrocytes, there were no significant
correlations between telomere lengths and levels of TERT
or antioxidant gene expressions.

Telomere shortening in mononuclear blood cells
has been described in normal aging and in numerous
psychiatric, neurological and medical disorders (Epel
et al., 2006; Simon et al., 2006; Wolkowitz et al., 2010;
Armanios and Blackburn, 2012; Wikgren et al., 2012).
Similarly, an increased frequency of white matter hyper-
intensities has been observed in normal aging and a
variety of psychiatric, neurological and medical dis-
orders. Whether telomere shortening occurs in brain
oligodendrocytes in disorders other than MDD is cur-
rently unknown, and was not addressed in the present
study. If telomere shortening in oligodendrocytes contri-
butes to the aetiology of white matter hyper-intensities,
it seems unlikely that telomere shortening in oligodendro-
cytes will be found to be specific to MDD. Likewise, it re-
mains undetermined whether telomere shortening occurs
in all white matter areas or is restricted to regions of the
brain that process emotionally charged information.
Furthermore, it remains undetermined whether oligoden-
drocytes or specific populations of neurons in grey matter
regions are similarly affected in MDD. Additional re-
search is required to fill these numerous gaps in knowl-
edge concerning telomere shortening and its role in
brain disorders.

Conclusions

The findings of this study demonstrate cell-specific
shortening of telomeres in white matter in MDD. The
affected cells, oligodendrocytes, also demonstrate evi-
dence of disrupted mechanisms that normally maintain
telomere length or protect the telomere from oxidative
stress-induced degradation. Since oligodendrocytes
myelinate axon fibres traveling through white matter,
oligodendrocytes with diminished function as a result
of oxidative stress could contribute to disturbed neuronal
communication between key brain regions. The precise
relationship between telomere lengths, oxidative
stress defence capacity and oligodendrocyte function
remains to be determined. Nevertheless, it seems
reasonable to consider that medicines that preserve telo-
mere length in these cells may be beneficial to mental
health.
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