582 research outputs found
Landslide Susceptibility Map of Johnson County, Kentucky
The purpose of this map is to identify landslide-prone areas in Johnson County in order to provide the public, as well as local and state government agencies, with information about where landslides are likely to occur. This map represents geomorphic-based susceptibility modeling that focuses on physical slope characteristics and morphology, the quality of which is dependent on data accuracy and resolution of terrain models. The availability of high-resolution (5-ft digital elevation model) lidar derived datasets allows for the generation of terrain elevation derivatives such as hillshades, slope, aspect, curvature, and roughness, as well as identification of existing landslide deposits. These high-resolution lidar derived datasets, coupled with landslide inventory mapping, enable us to produce detailed, high-resolution landslide susceptibility maps
Landslide Susceptibility Map of Floyd County, Kentucky
The purpose of this map is to identify landslide-prone areas in Floyd County in order to provide the public, as well as local and state government agencies, with information about where landslides are likely to occur. This map represents geomorphic-based susceptibility modeling that focuses on physical slope characteristics and morphology, the quality of which is dependent on data accuracy and resolution of terrain models. The availability of high-resolution (5-ft digital elevation model) lidar derived datasets allows for the generation of terrain elevation derivatives such as hillshades, slope, aspect, curvature, and roughness, as well as identification of existing landslide deposits. These high-resolution lidar derived datasets, coupled with landslide inventory mapping, enable us to produce detailed, high-resolution landslide susceptibility maps
Landslide Susceptibility Map of Pike County, Kentucky
The purpose of this map is to identify landslide-prone areas in Pike County in order to provide the public, as well as local and state government agencies, with information about where landslides are likely to occur. This map represents geomorphic-based susceptibility modeling that focuses on physical slope characteristics and morphology, the quality of which is dependent on data accuracy and resolution of terrain models. The availability of high-resolution (5-ft digital elevation model) lidar derived datasets allows for the generation of terrain elevation derivatives such as hillshades, slope, aspect, curvature, and roughness, as well as identification of existing landslide deposits. These high-resolution lidar derived datasets, coupled with landslide inventory mapping, enable us to produce detailed, high-resolution landslide susceptibility maps
Landslide Susceptibility Map of Martin County, Kentucky
The purpose of this map is to identify landslide-prone areas in Martin County in order to provide the public, as well as local and state government agencies, with information about where landslides are likely to occur. This map represents geomorphic-based susceptibility modeling that focuses on physical slope characteristics and morphology, the quality of which is dependent on data accuracy and resolution of terrain models. The availability of high-resolution (5-ft digital elevation model) lidar derived datasets allows for the generation of terrain elevation derivatives such as hillshades, slope, aspect, curvature, and roughness, as well as identification of existing landslide deposits. These high-resolution lidar derived datasets, coupled with landslide inventory mapping, enable us to produce detailed, high-resolution landslide susceptibility maps
Landslide Susceptibility Map of Magoffin County, Kentucky
The purpose of this map is to identify landslide-prone areas in Magoffin County, Kentucky, in order to provide the public, as well as local and state government agencies, with information about where landslides are likely to occur. This map represents geomorphic-based susceptibility modeling that focuses on physical slope characteristics and morphology, the quality of which is dependent on data accuracy and resolution of terrain models. The availability of high-resolution (5-ft digital elevation model) lidar derived datasets allows for the generation of terrain elevation derivatives such as hillshades, slope, aspect, curvature, and roughness, as well as identification of existing landslide deposits. These high-resolution lidar derived datasets, coupled with landslide inventory mapping, enable us to produce detailed, high-resolution landslide susceptibility maps
Reconnaissance of Landslides and Debris Flows Associated with the July 2022 Flooding in Eastern Kentucky
Between July 25 and July 30, 2022, a series of convective storms generated approximately 14–16 inches of rainfall across parts of eastern Kentucky, predominately in Clay, Leslie, Perry, Breathitt, Knott, and Letcher Counties. The peak rainfall occurred on the evening of July 27 and the morning of July 28, with the hardest-hit areas experiencing more than 10 inches in a 24-hour period. The historic rainfall led to catastrophic flooding along many rivers and streams, but also triggered widespread landslides and debris flows that damaged roads, homes, property, and other infrastructure. Once initial relief and recovery efforts were established, the Kentucky Geological Survey (KGS) geohazard section conducted a preliminary field reconnaissance that observed and documented landslides and debris flows triggered by the July storm event. We documented landslides from late August to early November 2022 using (1) visual field inspection methods and (2) a remote sensing technique called normalized differencing vegetation index (NDVI). Visual field inspection occurred primarily along roads through documentation of landslide type and location. The NDVI technique allowed identification of larger landslides and debris flows not easily accessible in a vehicle. We identified more than 1,000 new landslides and debris flows triggered by the July event. The majority of landslides the team identified were shallow translational slides, supplemented by some rotational slides (slumps), and debris flows. Documenting landslides in the field before they perish is important for future hazard assessment modeling. Landslide inventories associated with large storm events, and large impact areas, will improve our understanding of landslide occurrence and rainfall rates, and potentially our ability to forecast landslides. The data is intended for use by both scientists and non-scientists, such as emergency managers and public safety decision-makers
Recommended from our members
Evidence for Accelerated Weathering and Sulfate Export in High Alpine Environments
High elevation alpine ecosystems—the \u27water towers of the world\u27—provide water for human populations around the globe. Active geomorphic features such as glaciers and permafrost leave alpine ecosystems susceptible to changes in climate which could also lead to changing biogeochemistry and water quality. Here, we synthesize recent changes in high-elevation stream chemistry from multiple sites that demonstrate a consistent and widespread pattern of increasing sulfate and base cation concentrations or fluxes. This trend has occurred over the past 30 years and is consistent across multiple sites in the Rocky Mountains of the United States, western Canada, the European Alps, the Icelandic Shield, and the Himalayas in Asia. To better understand these recent changes and to examine the potential causes of increased sulfur and base cation concentrations in surface waters, we present a synthesis of global records as well as a high resolution 33 year record of atmospheric deposition and river export data from a long-term ecological research site in Colorado, USA. We evaluate which factors may be driving global shifts in stream chemistry including atmospheric deposition trends and broad climatic patterns. Our analysis suggests that recent changes in climate may be stimulating changes to hydrology and/or geomorphic processes, which in turn lead to accelerated weathering of bedrock. This cascade of effects has broad implications for the chemistry and quality of important surface water resources
- …