711 research outputs found

    Myeloid Cell Mediated Immune Suppression in Pancreatic Cancer

    Get PDF
    Pancreatic ductal adenocarcinoma (PDA), the most common pancreatic cancer, is a nearly-universally lethal malignancy. PDA is characterized by extensive infiltration of immunosuppressive myeloid cells, including tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs). Myeloid cells in the tumor microenvironment (TME) inhibit cytotoxic T cell responses promoting carcinogenesis. Immune checkpoint therapy has not been effective in PDA, most likely due to this robust immune suppression, making it critical to elucidate mechanisms behind this phenomenon. Here, we review myeloid cell infiltration and cellular crosstalk in PDA progression and highlight current therapeutic approaches to target myeloid cell-driven immune suppression

    Prkci Regulates Autophagy and Pancreatic Tumorigenesis in Mice

    Get PDF
    Protein kinase C iota (PKCι) functions as a bonafide human oncogene in lung and ovarian cancer and is required for Kras(G12D)-mediated lung cancer initiation and progression. PKCι expression is required for pancreatic cancer cell growth and maintenance of the transformed phenotype; however, nothing is known about the role of PKCι in pancreas development or pancreatic tumorigenesis. In this study, we investigated the effect of pancreas-specific ablation of PKCι expression on pancreatic cellular homeostasis, susceptibility to pancreatitis, and Kras(G12D)-mediated pancreatic cancer development. Knockout of pancreatic Prkci significantly increased pancreatic immune cell infiltration, acinar cell DNA damage, and apoptosis, but reduced sensitivity to caerulein-induced pancreatitis. Prkci-ablated pancreatic acinar cells exhibited P62 aggregation and a loss of autophagic vesicles. Loss of pancreatic Prkci promoted Kras(G12D)-mediated pancreatic intraepithelial neoplasia formation but blocked progression to adenocarcinoma, consistent with disruption of autophagy. Our results reveal a novel promotive role for PKCι in pancreatic epithelial cell autophagy and pancreatic cancer progression

    Essential nonlinearities in hearing

    Get PDF
    Our hearing organ, the cochlea, evidently poises itself at a Hopf bifurcation to maximize tuning and amplification. We show that in this condition several effects are expected to be generic: compression of the dynamic range, infinitely shrap tuning at zero input, and generation of combination tones. These effects are "essentially" nonlinear in that they become more marked the smaller the forcing: there is no audible sound soft enough not to evoke them. All the well-documented nonlinear aspects of hearing therefore appear to be consequences of the same underlying mechanism.Comment: 4 pages, 3 figure

    Deficiencies of the Lipid-Signaling Enzymes Phospholipase D1 and D2 Alter Cytoskeletal Organization, Macrophage Phagocytosis, and Cytokine-Stimulated Neutrophil Recruitment

    Get PDF
    Cell migration and phagocytosis ensue from extracellular-initiated signaling cascades that orchestrate dynamic reorganization of the actin cytoskeleton. The reorganization is mediated by effector proteins recruited to the site of activity by locally-generated lipid second messengers. Phosphatidic acid (PA), a membrane phospholipid generated by multiple enzyme families including Phospholipase D (PLD), has been proposed to function in this role. Here, we show that macrophages prepared from mice lacking either of the classical PLD isoforms PLD1 or PLD2, or wild-type macrophages whose PLD activity has been pharmacologically inhibited, display isoform-specific actin cytoskeleton abnormalities that likely underlie decreases observed in phagocytic capacity. Unexpectedly, PA continued to be detected on the phagosome in the absence of either isoform and even when all PLD activity was eliminated. However, a disorganized phagocytic cup was observed as visualized by imaging PA, F-actin, Rac1, an organizer of the F-actin network, and DOCK2, a Rac1 activator, suggesting that PLD-mediated PA production during phagocytosis is specifically critical for the integrity of the process. The abnormal F-actin reorganization additionally impacted neutrophil migration and extravasation from the vasculature into interstitial tissues. Although both PLD1 and PLD2 were important in these processes, we also observed isoform-specific functions. PLD1-driven processes in particular were observed to be critical in transmigration of macrophages exiting the vasculature during immune responses such as those seen in acute pancreatitis or irritant-induced skin vascularization

    The Loss of ATRX Increases Susceptibility to Pancreatic Injury and Oncogenic KRAS in Female But Not Male Mice

    Get PDF
    Female mice lacking ATRX in the pancreas have increased sensitivity to pancreatic cancer, whereas male mice without ATRX are protected. This study identifies such susceptibility in pancreatic cancer and highlights the need for sex-specific approaches in cancer treatment. BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer death in North America, accounting for \u3e30,000 deaths annually. Although somatic activating mutations in KRAS appear in 97% of PDAC patients, additional factors are required to initiate PDAC. Because mutations in genes encoding chromatin remodelling proteins have been implicated in KRAS-mediated PDAC, we investigated whether loss of chromatin remodeler.-thalassemia, mental-retardation, X-linked (ATRX) affects oncogenic KRAS\u27s ability to promote PDAC. ATRX affects DNA replication, repair, and gene expression and is implicated in other cancers including glioblastomas and pancreatic neuroendocrine tumors. The hypothesis was that deletion of Atrx in pancreatic acinar cells will increase susceptibility to injury and oncogenic METHODS: Mice allowing conditional loss of Atrx within pancreatic acinar cells were examined after induction of recurrent cerulein-induced pancreatitis or oncogenic KRAS (KRASG12D). Histologic, biochemical, and molecular analysis examined pancreatic pathologies up to 2 months after induction of Atrx deletion. RESULTS: Mice lacking Atrx showed more progressive damage, inflammation, and acinar-to-duct cell metaplasia in response to injury relative to wild-type mice. In combination with KRASG12D, Atrx-deficient acinar cells showed increased fibrosis, inflammation, progression to acinar-to-duct cell metaplasia, and pre-cancerous lesions relative to mice expressing only KRASG12D. This sensitivity appears only in female mice, mimicking a significant prevalence of ATRX mutations in human female PDAC patients. CONCLUSIONS: Our results indicate the absence of ATRX increases sensitivity to injury and oncogenic KRAS only in female mice. This is an instance of a sex-specific mutation that enhances oncogenic KRAS\u27s ability to promote pancreatic intraepithelial lesion formation

    A Bitter Taste Receptor as a Novel Molecular Target on Cancer-Associated Fibroblasts in Pancreatic Ductal Adenocarcinoma

    Get PDF
    Cancer-associated fibroblasts (CAFs) execute diverse and complex functions in cancer progression. While reprogramming the crosstalk between CAFs and cancer epithelial cells is a promising avenue to evade the adverse effects of stromal depletion, drugs are limited by their suboptimal pharmacokinetics and off-target effects. Thus, there is a need to elucidate CAF-selective cell surface markers that can improve drug delivery and efficacy. Here, functional proteomic pulldown with mass spectrometry was used to identify taste receptor type 2 member 9 (TAS2R9) as a CAF target. TAS2R9 target characterization included binding assays, immunofluorescence, flow cytometry, and database mining. Liposomes conjugated to a TAS2R9-specific peptide were generated, characterized, and compared to naked liposomes in a murine pancreatic xenograft model. Proof-of-concept drug delivery experiments demonstrate that TAS2R9-targeted liposomes bind with high specificity to TAS2R9 recombinant protein and exhibit stromal colocalization in a pancreatic cancer xenograft model. Furthermore, the delivery of a CXCR2 inhibitor by TAS2R9-targeted liposomes significantly reduced cancer cell proliferation and constrained tumor growth through the inhibition of the CXCL-CXCR2 axis. Taken together, TAS2R9 is a novel cell-surface CAF-selective target that can be leveraged to facilitate small-molecule drug delivery to CAFs, paving the way for new stromal therapies

    Self-tuning to the Hopf bifurcation in fluctuating systems

    Full text link
    The problem of self-tuning a system to the Hopf bifurcation in the presence of noise and periodic external forcing is discussed. We find that the response of the system has a non-monotonic dependence on the noise-strength, and displays an amplified response which is more pronounced for weaker signals. The observed effect is to be distinguished from stochastic resonance. For the feedback we have studied, the unforced self-tuned Hopf oscillator in the presence of fluctuations exhibits sharp peaks in its spectrum. The implications of our general results are briefly discussed in the context of sound detection by the inner ear.Comment: 37 pages, 7 figures (8 figure files

    ROSAT observations of X-ray emission from planetary nebulae

    Full text link
    We have searched the entire ROSAT archive for useful observations to study X-ray emission from Galactic planetary nebulae (PNs). The search yields a sample of 63 PNs, which we call the ROSAT PN sample. About 20-25% of this sample show X-ray emission; these include 13 definite detections and three possible detections (at a 2-sigma level). All X-ray sources in these PNs are concentrated near the central stars. Only A 30, BD+30 3639, and NGC 6543 are marginally resolved by the ROSAT instruments. Three types of X-ray spectra are seen in PNs. Type 1 consists of only soft X-ray emission (<0.5 keV), peaks at 0.1-0.2 keV, and can be fitted by blackbody models at temperatures 1-2 10^5 K. Type 2 consists of harder X-ray emission, peaks at >0.5 keV, and can be fitted by thin plasma emission models at temperatures of a few 10^6 K. Type 3 is a composite of a bright Type 1 component and a fainter Type 2 component. Unresolved soft sources with Type 1 spectra or the soft component of Type 3 spectra are most likely photospheric emission from the hot central stars. Absorption cross sections are large for these soft-energy photons; therefore, only large, tenuous, evolved PNs with hot central stars and small absorption column densities have been detected. The origin of hard X-ray emission from PNs is uncertain. PNs with Type 2 spectra are small, dense, young nebulae with relatively cool (<<10^5 K) central stars, while PNs with Type 3 X-ray spectra are large, tenuous, evolved nebulae with hot central stars. The hard X-ray luminosities are also different between these two types of PNs, indicating perhaps different origins of their hard X-ray emission. Future Chandra and XMM observations with high spatial and spectral resolution will help to understand the origin of hard X-ray emission from PNs.Comment: To be published in The Astrophysical Journal Supplement Series. 21 pages, 7 figures, 5 table

    Loss of the ciliary protein Chibby1 in mice leads to exocrine pancreatic degeneration and pancreatitis

    Get PDF
    Primary cilia protrude from the apical surface of many cell types and act as a sensory organelle that regulates diverse biological processes ranging from chemo- and mechanosensation to signaling. Ciliary dysfunction is associated with a wide array of genetic disorders, known as ciliopathies. Polycystic lesions are commonly found in the kidney, liver, and pancreas of ciliopathy patients and mouse models. However, the pathogenesis of the pancreatic phenotype remains poorly understood. Chibby1 (Cby1), a small conserved coiled-coil protein, localizes to the ciliary base and plays a crucial role in ciliogenesis. Here, we report that Cby1-knockout (KO) mice develop severe exocrine pancreatic atrophy with dilated ducts during early postnatal development. A significant reduction in the number and length of cilia was observed in Cby1-KO pancreta. In the adult Cby1-KO pancreas, inflammatory cell infiltration and fibrosis were noticeable. Intriguingly, Cby1-KO acinar cells showed an accumulation of zymogen granules (ZGs) with altered polarity. Moreover, isolated acini from Cby1-KO pancreas exhibited defective ZG secretion in vitro. Collectively, our results suggest that, upon loss of Cby1, concomitant with ciliary defects, acinar cells accumulate ZGs due to defective exocytosis, leading to cell death and progressive exocrine pancreatic degeneration after birth

    ADAM10 is essential for Notch2-dependent marginal zone B cell development and CD23 cleavage in vivo

    Get PDF
    The proteolytic activity of a disintegrin and metalloproteinase 10 (ADAM10) regulates cell-fate decisions in Drosophila and mouse embryos. However, in utero lethality of ADAM10−/− mice has prevented examination of ADAM10 cleavage events in lymphocytes. To investigate their role in B cell development, we generated B cell–specific ADAM10 knockout mice. Intriguingly, deletion of ADAM10 prevented development of the entire marginal zone B cell (MZB) lineage. Additionally, cleavage of the low affinity IgE receptor, CD23, was profoundly impaired, but subsequent experiments demonstrated that ADAM10 regulates CD23 cleavage and MZB development by independent mechanisms. Development of MZBs is dependent on Notch2 signaling, which requires proteolysis of the Notch2 receptor by a previously unidentified proteinase. Further experiments revealed that Notch2 signaling is severely impaired in ADAM10-null B cells. Thus, ADAM10 critically regulates MZB development by initiating Notch2 signaling. This study identifies ADAM10 as the in vivo CD23 sheddase and an important regulator of B cell development. Moreover, it has important implications for the treatment of numerous CD23- and Notch-mediated pathologies, ranging from allergy to cancer
    corecore