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1Department of Molecular and Cellular Pathology, 2Department of Surgery, 3Department of Cell and Developmental Biology,
and 4Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan; and 5Henry Ford Pancreatic Cancer Center, Henry
Ford Health System, Detroit, Michigan

SUMMARY

The immunosuppressive tumor microenvironment in
pancreatic cancer is comprised in part by various myeloid
cells, including tumor-associated macrophages (TAMs) and
myeloid-derived suppressor cells (MDSCs). We discuss the
role of TAMs and MDSCs in promoting immune suppression
and highlight current myeloid targeted therapies.

Pancreatic ductal adenocarcinoma (PDA), the most
common pancreatic cancer, is a nearly universally

lethal malignancy. PDA is characterized by extensive infil-
tration of immunosuppressive myeloid cells, including
tumor-associated macrophages and myeloid-derived sup-
pressor cells. Myeloid cells in the tumor microenvironment
inhibit cytotoxic T-cell responses promoting carcinogenesis.
Immune checkpoint therapy has not been effective in PDA,
most likely because of this robust immune suppression,
making it critical to elucidate mechanisms behind this
phenomenon. Here, we review myeloid cell infiltration and
cellular crosstalk in PDA progression and highlight current
therapeutic approaches to target myeloid cell-driven im-
mune suppression.

Pancreatic ductal adenocarcinoma (PDA) is one of the
most lethal human malignancies, with a 5-year survival rate
of only 10%.1 PDA is projected to become the second
leading cause of cancer-related deaths by 2030.2 This poor
prognosis is due in part to most patients presenting with
metastatic disease and overwhelming resistance to chemo-
therapy and radiotherapy approaches. The only potential
cure for PDA is surgical resection, for which only 20% of
patients are eligible, and ultimately 80% of these patients
will relapse with local recurrence or metastatic disease.3

Current frontline therapies are the chemotherapy regi-
mens FOLFIRINOX or gemcitabine/nab-paclitaxel, which
modestly extend survival.4–6 The main genetic drivers of
PDA are mutations in the KRAS oncogene,7,8 along with loss
of functional tumor suppressors (TP53, SMAD4, INK4A).9,10

Both acinar cells and ductal cells within the healthy
pancreas can give rise to PDA, although acinar cells appear
to have a higher propensity for transformation.11 Acinar
cells go through a plastic transdifferentiation process called
acinar to ductal metaplasia (ADM), which can progress to
pancreatic intraepithelial neoplasia (PanINs) and ultimately
adenocarcinoma.12 These stages of progression of human

PDA have been recapitulated in genetically engineered mouse
models that target oncogenic Kras expression to the pancreas,
combined with inactivation of tumor suppressors.13–15

PDA is characterized by a dense fibroinflammatory
stroma that consists of fibroblasts, vasculature, nerves,
extracellular matrix components, and infiltrating immune
cells.16 The immune cells within the tumor microenviron-
ment (TME) are immunosuppressive in nature.17 Within the
TME, there is an extensive infiltration of myeloid cells that
directly promote tumor progression18 and prevent T-cell
responses.19 Accordingly, myeloid cell abundance in tumors
correlates with worse outcomes,20,21 whereas the abun-
dance of tumor-infiltrating T cells correlates with longer
survival.22

Immune therapy has revolutionized treatment for
several malignancies.23,24 However, the benefit of single
agent immunotherapy has not yet extended to PDA,25,26

with the exception of the 1% of PDA patients with micro-
satellite instability high tumors.27 Immune checkpoint
therapy acts by reactivating T-cell effector functions most
commonly through blockade of programmed cell death 1
(PD-1) or cytotoxic T-lymphocyte antigen 4 (CTLA-4),
unleashing anti-tumor T-cell responses that result in
reduced tumor burden.28 Although single agent immuno-
therapy has not been effective in PDA, recent trials using
combination of targeting of T cells and myeloid cells are
ongoing, supported by robust preclinical data. In this re-
view, we will describe the critical role myeloid cells play as
mediators of immune suppression in PDA and highlight
potential strategies to target these cells in the context of
combination immunotherapy.

Abbreviations used in this paper: ADM, acinar to ductal metaplasia;
CSFIR, colony-stimulating factor 1 receptor; CTLA-4, cytotoxic T
lymphocyte antigen 4; EGFR, epidermal growth factor receptor; GM-
CSF, granulocyte-macrophage colony-stimulating factor; HB-EGF,
heparin-binding EGF-like growth factor; IKK, inhibitory kB kinase; IL,
interleukin; MAPK, mitogen-activated protein kinase; MDSC, myeloid-
derived suppressor cell; M-MDSC, mononuclear myeloid-derived
suppressor cell; NF-kB, nuclear factor kappa B; PanIN, pancreatic
intraepithelial neoplasia; PDA, pancreatic ductal adenocarcinoma; PD-
1, programmed cell death; PMN, polymorphonuclear; TAM, tumor-
associated macrophage; TME, tumor microenvironment; TNF, tumor
necrosis factor.
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Multiple Myeloid Cell Populations
Promote PDA

In normal physiology, myeloid cells develop from he-
matopoietic stem cells in the bone marrow in a process
called myelopoiesis.29 Myeloid cells are defined as CD45þ

CD11bþ cells but further differentiate into distinct pop-
ulations: macrophages, granulocytes, mast cells, and den-
dritic cells, all components of the innate immune system.
Macrophages within the tumor are referred to as tumor-
associated macrophages (TAMs) and have distinct features
compared with normal macrophages. Granulocytes can be
further divided into eosinophils, basophils, and neutrophils.
Within the TME, neutrophils and monocytes are often in an
immature state referred to as immature myeloid cells/
myeloid-derived suppressor cell (MDSC). In this review we
will focus specifically on the role of TAMs and MDSCs in
PDA progression (Figure 1).

Tumor-Associated Macrophages
Within the PDA TME, macrophages are an abundant im-

mune cell population.30,31 Macrophages derived from em-
bryonic progenitors constitute the tissue-resident population;
macrophages can also derive from infiltrating monocytes.32

Macrophages perform multiple physiological functions,
including phagocytosis to eliminate debris, antigen presen-
tation, and cytokine secretion to recruit other immune cells
to the site of injury.33,34 Macrophages are defined by
expression of CD11bþ CD68þ EMR1þ in humans and CD11bþ

CD68þ F4/80þ in mice. Macrophages are plastic cells that
exist on a spectrum of differentiation states. On the basis of
in vitro assays, macrophages can be classified into 2 main
subtypes on each extreme of the spectrum. M1, or classically
activated, macrophages are generally considered to have anti-
tumor activities and can be induced through interferon-
gamma and toll-like receptor stimuli.35 M1 macrophages
are characterized by high expression of interleukin 12 (IL12),
tumor necrosis factor (TNF), and inducible nitric oxide syn-
thase. M2, or alternatively activated, macrophages are
considered to have pro-tumor activities36 and can be induced
through the cytokines IL4 and IL13.37 M2 macrophages lose
their antigen presentation abilities and act to instead sup-
press the immune response through a variety of mechanisms.

The M1/M2 classification is an oversimplification that is
helpful for broad description but does not accurately
describe the in vivo heterogeneity of TAMs. TAMs within the
tumor are derived from either infiltrating monocytes or
embryonically derived, tissue-resident macrophages.38

Furthermore, the heterogeneity of TAM origin has func-
tional implications, where monocyte derived TAMs have
increased antigen presentation abilities, and embryonically
derived TAMs shape the fibrotic response.38 Within the
TME, TAMs conform to neither the M1 nor the M2 pheno-
type but rather have traits of both polarization states.35

Their overall pro-tumor function explains the inverse cor-
relation between TAMs and survival.39,40

TAMs have been extensively studied in PDA. Because of
the plasticity of macrophages, TAM targeted therapy aims to
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Figure 1. Myeloid cell lineage differentiation and markers. Schematic of myeloid cell differentiation from the bone marrow.
Hematopoietic stem cells (HSC) from the bone marrow give rise to common myeloid progenitors (CMP), which give rise to
monocytes, granulocytes, and immature myeloid cells, referred to as myeloid-derived suppressor cells (MDSCs). Monocytes in
the circulation differentiate into tumor-associated macrophages (TAM) when they enter the tissue. TAMs exist on a spectrum
of polarization, with M1 and M2 being at either extreme. MDSCs can be classified into 2 main subsets: PMN-MDSC and
M-MDSC. PMN-MDSCs are phenotypically more similar to granulocytes, and M-MDSCs closely resemble monocytes (dashed
arrow). Surface markers used to define each myeloid population in both mice and humans are listed on the right.
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reprogram them to their anti-tumor functions. The colony-
stimulating factor 1/colony-stimulating factor 1 receptor
(CSF1/CSF1R) axis recruits and polarizes immunosuppres-
sive TAMs. CSF1R is the major lineage regulator for all
macrophage subsets.35 PDA tumors are infiltrated by
CSF1Rþ macrophages.41,42 Inhibition of CSF1R in mice re-
sults in reduced tumor burden and an increase in T-cell
infiltration, providing evidence that targeting TAMs relieves
immune suppression in the TME.19,41 Furthermore, CSF1R
inhibition in mice sensitizes PDA tumors to either PD-1 or
CTLA-4 antagonists,42 suggesting that although single agent
immunotherapy is not sufficient to reduce tumor burden,
immune checkpoint blockade in combination with TAM
modulating therapies can effectively reverse immune ther-
apy resistance.

The CCL2/CCR2 chemokine axis is critical for the genesis
of TAMs. CCL2 produced by tumor cells recruits CCR2þ

monocytes from the bone marrow to the circulation that
then differentiate into TAMs after entering the tumor tis-
sue.43 PDA patients with high levels of circulating mono-
cytes have worse overall survival rates.20 Monocytes in
circulation do not possess the same immunosuppressive
abilities as TAMs, suggesting the cellular crosstalk in the
TME is critical for this function.20 CCR2 blockade in mice
results in retention of CCR2þ monocytes in the bone
marrow, impairing tumor growth.20 CCR2 blockade in
combination with gemcitabine further impairs tumor
growth.20 Similarly, in a PDA clinical trial, patients with
borderline resectable and locally advanced disease were
treated with a combination of FOLFIRINOX and CCR2
antagonist (PF-04136309).44 After treatment, patients had
reduced circulating CCR2þ monocytes and subsequently
fewer TAMs in the tumor, as well as increased CD8þ T
cells.44 However, a recent phase 1b trial evaluated PF-
04136309 in combination with gemcitabine/nab-paclitaxel
in patients with metastatic PDA.45 Unlike the previous
phase 1b trial, this study did not show that PF-04136309
added additional benefit to the prescribed chemotherapy
regimen.45 Furthermore, in the setting of metastatic PDA,
CCR2 inhibition in combination with gemcitabine/nab-
paclitaxel was not tolerable in patients.45 Taken together,
these reports suggest that the benefit of CCR2 inhibition
may be limited to locally advanced disease that does not
extend to metastatic patients.

In addition to an increase in macrophage frequency in
PDA, a recent study used multiplex immunofluorescence to
evaluate the spatial relationship of M1 and M2 macrophages
in human PDA.46 M1 macrophages were more often found in
close proximity to tumor cells, compared with M2 macro-
phages. Interestingly, when M2 macrophages resided near
tumor cells, patients had worse survival outcomes,
compared with patients with more distal M2 macrophages.
This study provides evidence that both macrophage abun-
dance and location are important factors for patient
outcome.

TAMs within the PDA TME express less antigen pre-
senting MHC II,47 suggesting that macrophages could be
reprogrammed to perform their role as antigen presenting
cells. CD40 is a member of the TNF receptor superfamily

and is expressed broadly on immune cells including
monocytes and macrophages.48,49 Activation of CD40 with
an agonist (FGK45) in mice resulted in up-regulation of
MHC II in macrophages from the tumor and spleen, sug-
gesting CD40 activation in part reprograms TAMs to an
anti-tumor phenotype.50,51 FGK45 in combination with
gemcitabine resulted in reduced tumor burden in a cohort
of patients.50 In addition, combination of gemcitabine and
CD40 agonism resulted in increased tumoral T-cell infiltra-
tion in mice.52 Paralleling the human trials, mouse models of
PDA are also resistant to single agent immune checkpoint
blockade; however, combined chemotherapy and immuno-
therapy approaches have shown success. Combination
therapy of gemcitabine/nab-paclitaxel and aCD40 agonist
sensitizes tumors to aPD-1 and aCTLA-4 immunotherapy in
murine models of PDA.53 This combined chemotherapy and
immunotherapy approach (gemcitabine, nab-paclitaxel,
aCD40 agonist, aPD-1) is currently under clinical trial for
patients with metastatic PDA (NCT03214250). Furthermore,
in mice, the effectiveness of the combined chemotherapy
and immunotherapy regimen can be predicted on the basis
of the amount of CD8þ T-cell infiltration, with tumors rich in
CD8þ T cells correlating with increased therapeutic
response.54

Taken together, these studies highlight the tumor pro-
moting role of TAMs in the PDA TME. Macrophage targeted
therapy is promising because it synergizes with frontline
chemotherapy and immunotherapy regimens to reactivate
effector T-cell responses and reduce tumor burden.

Myeloid-Derived Suppressor Cells
MDSCs are immature myeloid cells with immunosup-

pressive functions. MDSCs can be further classified into 2
main populations, polymorphonuclear (PMN)-MDSCs/gran-
ulocytic-MDSCs and mononuclear-MDSCs (M-MDSCs). These
subsets are phenotypically distinct. PMN-MDSCs have more
resemblance to granulocytes/neutrophils, whereas M-MDSCs
closely resemble monocytes. In mice, MDSCs are broadly
defined by CD11bþ Gr-1þ, with Ly-6C and Ly-6G used to
delineate MDSC populations.55 In mice, MDSCs are defined
CD11bþ Ly6Clo Ly6Gþ for PMN-MDSCs and CD11bþ Ly6Chi

Ly6G- for M-MDSCs.55 Because of their phenotypic differ-
ences, human PMN-MDSCs, which closely mirror gran-
ulocytes/neutrophils, are defined by CD11bþ CD14- CD15þ

or CD11bþ CD14- CD66bþ, whereas human M-MDSCs, which
are more similar to monocytes, are defined by CD11bþ

CD14þ HLA-DR-/lo CD15- .55 Although PMN-MDSCs and
M-MDSCs are the major MDSC populations, there are MDSCs
that share markers of both and may represent a common
progenitor. This third MDSC population is called early stage
MDSCs and has yet to be functionally evaluated in PDA.55

Although MDSCs are unique from their mature myeloid
counterparts, neutrophils and monocytes, controversy re-
mains on separating PMN-MDSCs from neutrophils.
Currently, there are no markers to distinguish the immature
PMN-MDSCs from mature neutrophils, and the only possible
method of separation is via density centrifugation.56 M-MDSCs
differ from monocytes because they express low HLA-DR
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and differ from TAMs because they do not express F4/80.57

Distinction between neutrophils and PMN-MDSCs remains
challenging, and distinctive markers are needed.

Importantly, MDSCs are ultimately defined by their
functionality. MDSCs perform their immune suppressive
functions through multiple mechanisms, with the main one
being depletion of the essential amino acid L-arginine from
the TME.58,59 MDSCs produce high levels of Arginase 1
(ARG1), an enzyme that metabolizes L-arginine, resulting in
T-cell inhibition.60 When considering MDSC function, it is
important to also consider that MDSCs exist in 2 main
populations. PMN-MDSCs comprise the largest percentage
of MDSCs found in the blood and the tumor, compared with
M-MDSCs.61 Despite M-MDSCs making up a smaller portion
of the tumor, they often have an increased immunosup-
pressive function than PMN-MDSCs.62 Both MDSC pop-
ulations express high amounts of the enzyme ARG1, which
depletes L-arginine, resulting in T-cell inhibition.63 Howev-
er, PMN-MDSCs and M-MDSCs have additional and distinct
immunosuppressive functions. PMN-MDSCs produce high
amounts of reactive oxygen species and low nitric oxide.61

M-MDSCs produce high nitric oxide and low reactive oxy-
gen species.61 Furthermore, M-MDSC immune suppression
is in part due to tumor cell-derived prostaglandin E2 acti-
vating p50, a nuclear factor kappa B (NF-kB) subunit that
results in increased inducible nitric oxide synthase pro-
duction.64 These data show MDSC populations have distinct
mechanisms to suppress T cells.

Because of the immunosuppressive nature of MDSCs,
targeting these cells within the PDA TME is an attractive
option for pancreatic cancer treatment. Early work in
mouse models targeted MDSCs through administration
of zoledronic acid, which acts to reduce MDSCs recruit-
ment through inhibition of matrix metalloproteinase 9.65

Administration of zoledronic acid in a PDA mouse model
results in delayed tumor growth, enhanced survival, and
increased CD8þ T-cell infiltration.66 CXCR2 is a receptor
found on neutrophils/MDSCs and regulates the recruit-
ment of MDSCs to the TME.67 Inhibition of CXCR2 in a
genetically engineered mouse model of pancreatic cancer
resulted in extended survival, an increase in T-cell infiltra-
tion, and synergy with immunotherapy.68 MDSCs are also
recruited to the tumor through tumor cell-derived gran-
ulocyte-macrophage colony-stimulating factor (GM-CSF)
secretion. Neutralization of GM-CSF in murine models of
PDA results in a reduction in MDSC recruitment and
subsequently reduced tumor growth.69,70 Depletion of the
PMN-MDSC subset with an antibody against Ly-6G results in
tumor cell death and increased CD8þ T-cell infiltration.71

Thus, MDSC-targeted therapies can partially reverse im-
mune suppression.

Myeloid-Epithelial Crosstalk Promotes
Immune Suppression

Myeloid cells do not act alone in establishing an immune
suppressive TME. Rather, they act as a central hub in a
complex cellular crosstalk that promotes tumor progression.
Here we will explore mechanisms of cellular crosstalk

between myeloid cells and cancer cells that activate signaling
pathways that enhance immune suppression (Figure 2).

Beyond their role in establishing an immunosuppressive
TME, myeloid cells play a critical role in promoting
pancreatic carcinogenesis.18,72–74 In a PDA mouse model
driven by inducible expression of oncogenic KrasG12D

(iKras),75 myeloid cell ablation––using CD11b promoter
driven expression of the diphtheria toxin receptor followed
by diphtheria toxin treatment76–– causes regression of early
PanIN lesions, preceded by reduced ERK activity in the
neoplasia.18 Although oncogenic KRAS is the main genetic
driver of PDA, it is not sufficient to induce carcinogenesis
without additional activation of epidermal growth factor
receptor (EGFR) to amplify mitogen-activated protein ki-
nase (MAPK) signaling in the epithelium.77,78 Of note,
myeloid cells in the neoplastic pancreas express high levels
of the EGFR ligands, heparin-binding EGF-like growth factor
(HB-EGF) and epiregulin, suggesting that they promote the
initial stages of pancreatic carcinogenesis by stimulating
epithelial EGFR. Conversely, oncogenic Kras expression in
the epithelium also alters macrophage polarization.18

Extinguishing Kras expression in the iKras model results
in decreased expression of Arginase 1 (Arg1) and the EGFR
ligand HB-EGF (Hbegf) in the myeloid compartment, with

w
e
b
4
C
=
F
P
O

Figure 2. Myeloid-epithelial crosstalk promotes immune
suppression. Schematic for cellular crosstalk and corre-
sponding signaling pathways in the PDA TME that contribute
to immune suppression. Myeloid cells secrete various li-
gands, HB-EGF, EREG, and TNF-a, that signal to their
respective receptors, EGFR and TNFR, on tumor cells, thus
activating EGFR/MAPK and NF-kB signaling, respectively.
MAPK signaling in tumor cells results in elevation of PD-L1
expression, inhibiting CD8þ T cells through interaction with
PD-1. NF-kB signaling in tumor cells results in secretion of
GM-CSF and CXCL1, CXCL2, and CXCL5, which recruit
MDSCs with the potential to suppress CD8þ T cells.
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subsequent loss of EGFR (Egfr) expression in the epithelial
compartment. These data suggest that KRAS/EGFR/MAPK
signaling regulates myeloid cell infiltration and polarization
before PanIN formation, which in turn promotes epithelial
transformation and progression of the neoplasia.

In addition to its early role in PDA formation, EGFR also
regulates immune suppression in mouse models after
carcinogenesis.74,79 Myeloid cell ablation from preexisting
tumors results in reduced tumor burden, providing evi-
dence that myeloid cells drive carcinogenesis in both early
and late stages of disease.74 Myeloid cells secrete HB-EGF,
an EGFR ligand, which activates EGFR/MAPK signaling in
tumor cells leading to increased PD-L1 expression.74

Furthermore, ablation of EGFR in PDA sensitized tumors
to chemotherapy and immunotherapy.79 Treatment with the
EGFR inhibitor erlotinib reduced tumoral myeloid cells,
increased CD8þ T cells, and enhanced response to immu-
notherapy.79 These studies suggest a role for EGFR/MAPK
in promoting carcinogenesis and myeloid-mediated immune
suppression.

NF-kB is a transcription factor with known diverse
function in regulation of the immune system.80 Dysregu-
lated NF-kB signaling can lead to inflammatory conditions
such as cancer.81 Along with KRAS, NF-kB is constitutively
active in PDA patients.82,83 NF-kB is held inactive in the
cytoplasm in a complex with inhibitory kB proteins. Extra-
cellular signals, such as TNFR ligation, activate inhibitory kB
kinase (IKK), phosphorylate inhibitory kB, targeting it for
degradation and resulting in the nuclear translocation of
NF-kB complexes to activate transcription of target genes.
The IKK complex is made up of 2 kinases, IKKa and IKKb,
and an additional subunit, NEMO/IKKg.84 Inactivation of
IKKb in PDA tumors reduced infiltration of macrophages
and MDSCs and blocked carcinogenesis, extending sur-
vival.82 Having established that both macrophages and NF-
kB are important for initial transformation, it is interesting
to note that one study linked an enhancement of ADM, the
initial step of transformation, to macrophage production of
TNF and subsequent activation of NF-kB.73 These data
suggest NF-kB is not only critical for PDA formation but also
mediates myeloid cell infiltration in the tumor.

NF-kB signaling also activates GM-CSF secretion.85 GM-CSF
is a cytokine that functions to recruit MDSCs.69,70 Human PDA
tumor cells treated with chemotherapy (gemcitabine or 5-FU)
have increased levels of GM-CSF.86 Coincidentally, human
tumor cells treated with gemcitabine have increased NF-kB
activity. Monocytes cultured with chemotherapy treated
tumor cells promote differentiation into immunosuppres-
sive MDSCs.86 Taken together, these data suggest one
possible mechanism for chemoresistance in PDA is active
NF-kB signaling in tumor cells, which promotes an immu-
nosuppressive myeloid phenotype, exacerbating disease.

NF-kB activates the expression of the chemokines CXCL1,
CXCL2, and CXCL5, which in turn recruit CXCR2þ MDSCs,
resulting in T-cell suppression.87–89 PDA patients have a
heterogenous infiltration of T cells.90,91 Recent work iden-
tified CXCL1 as one mediator for T-cell heterogeneity in the
PDA TME.54 Overexpression of tumor cell-derived Cxcl1 in-
creases myeloid infiltration, specifically the granulocytic

MDSCs, and fewer infiltrating CD8þ T cells, providing
further evidence on the immunosuppressive role of CXCL1
in the TME.54 Furthermore, ablation of Cxcl1 in tumor cells
results in fewer granulocytic MDSCs and a subsequent in-
crease in CD8þ T cells, allowing the tumors to be sensitized
to immunotherapy.54

Clearly, there is a complex cellular crosstalk between
tumor cells and myeloid cells that suppresses T-cell infil-
tration and function in the TME. Multiple pathways are
implicated in this immune suppressive phenotype. Work
thus far targeting this tumor-myeloid interaction is
compelling because it sensitizes tumors to immunotherapy
approaches, highlighting the translational implications for
PDA patients.

Myeloid Cells Establish the Pre-
Metastatic Niche and Promote
Metastatic Disease

The majority of PDA patients present with metastatic
disease, and for those patients, limited therapeutic options
are available. The liver is the most common site for meta-
static dissemination in PDA. Pancreatic tumor cells
disseminate early in carcinogenesis before progression to
carcinoma.92 Despite the severity of metastatic disease, the
process of metastasis is inefficient.93 A key barrier to tumor
cell dissemination and survival in distal organs is the
requirement of support from stromal cells.94 Inflammation
is critical for progression of the primary tumor95 but is also
critical for tumor cell dissemination.92 Myeloid cells colo-
nize these distal sites before the arrival of the tumor cells in
principle to create a hospitable environment for tumor cell
growth96–99 in a concept termed the pre-metastatic niche.

Currently, few studies have been performed evaluating
the pre-metastatic niche in PDA. One study showed mac-
rophages that are recruited to the liver secrete granulin,
which in turn activates myofibroblasts, creating a permis-
sive environment for tumor cell survival.94 Exosomes from
tumor cells were identified as another mediator that pro-
motes formation of the liver pre-metastatic niche in PDA.100

Tumor derived exosomes are taken up by Kupffer cells,
resident liver macrophages, resulting in increased fibrosis in
the liver and increased macrophage accumulation.100 This
stromal accumulation prepares the liver for ultimate tumor
cell survival. Macrophage migration inhibitory factor was
determined to be the primary exosome cargo driving the
pre-metastatic niche formation. As such, macrophage
migration inhibitory factor ablation prevented formation of
the pre-metastatic niche and subsequently reduced liver
metastasis.100

IL6/signal transducer and activator of transcription 3/
serum amyloid A signaling is another critical mechanism for
the formation of the liver pre-metastatic niche.97 Rather
than tumor cell-mediated formation of the pre-metastatic
niche, this study identifies hepatocytes as an additional
driver of the pre-metastatic niche.97 Genetic ablation of in-
dividual components of IL6/signal transducer and activator
of transcription 3/serum amyloid A signaling resulted in
fewer macrophages and PMN-MDSCs (Ly-6Gþ), preventing
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metastatic dissemination. The concept of the pre-metastatic
niche is an important question that is relatively unexplored
in PDA. Each of these studies provides a framework to
explain the role myeloid cells play in pre-metastatic for-
mation. Thus, identifying methods to interfere with myeloid
function has the potential to mitigate metastasis of this
highly aggressive cancer.

In addition to their role in tumorigenesis and pre-
metastatic niche preparation, myeloid cells have been
implicated in migration and invasion of metastatic disease in
many cancer types.35,101,102 CCR220 and CXCR268 inhibition
reduces metastatic dissemination in PDA through ablation
of monocytes/macrophages and MDSCs, respectively. MDSC
depletion in mouse PDA tumors converts the tumor from
the highly invasive basal subtype to the less aggressive
classical subtype and extended survival.68,103 Furthermore,
pharmacologic depletion of macrophages with liposomal
clodronate impairs angiogenesis and reduces metastasis
formation in mice with PDA.104 Myeloid cells appear to be
critical for both the formation of the pre-metastatic niche
and metastatic dissemination.

Macrophages Drive Resistance to
Chemotherapy

Because immune therapy has been ineffective in treating
PDA, frontline therapy remains chemotherapy regimens,
although they have only marginal efficacy.4,6,105,106 Current
standard-of-care chemotherapy regimens for PDA patients
include gemcitabine/nab-paclitaxel and FOLFIRINOX. How-
ever, PDA tumors are highly chemoresistant. A broad
approach of depleting all myeloid cells using CD11b-DTR
mice treated with diphtheria toxin results in tumors being
sensitized to gemcitabine,107 suggesting myeloid cells can
be targeted to reverse chemoresistance. Furthermore, dual
inhibition of TAMs (CCR2þ) and MDSCs (CXCR2þ) resulted
in increased efficacy of FOLFIRINOX.108

Myeloid Cell Compensatory Responses
Throughout this review we have highlighted a myriad of

reports targeting monocytes/macrophages and MDSCs in
PDA. It has become clear that these approaches, while
beneficial, often result in a compensatory response of the
other myeloid cell subsets. Two studies in PDA report a
compensatory increase in monocyte and macrophage sub-
sets when MDSCs are depleted.71,108 To prevent compen-
satory myeloid infiltration, another approach is to target all
myeloid cells via integrin CD11b on their surface. Although
antagonists for CD11b exist,109,110 they have not been well-
tolerated in patients because of toxicity.111 Instead, an
alternative approach to activate CD11b rather than antag-
onize has shown promise in preventing inflammation.112

The small molecule CD11b agonist reduces inflammation
in a mouse model of PDA.113 CD11b agonism reduces
myeloid infiltration, increases T-cell infiltration, and sensi-
tizes tumors to both chemotherapy and immunotherapy.113

Although the total number of myeloid cells was reduced
with CD11b agonism, macrophages that remained were
reprogrammed, reducing the expression of a number of

immunosuppressive genes (expressing Arginase 1, IL10,
transforming growth factor beta) and increasing antigen
presentation abilities, leading to activation of classical
dendritic cells and subsequent T-cell infiltration.113 CD11b
agonism is one potential avenue to avoid myeloid cell
compensation when targeting a select myeloid cell subset.

Myeloid cells compensate for depletion of regulatory T
cells, another immunosuppressive cell type in the PDA
TME.114 In one study, depletion of regulatory T cells did not
reverse immune suppression as hypothesized but rather
accelerated tumor progression, in part because of a
compensatory infiltration of immunosuppressive myeloid
cells (Arginase 1, Chitinase3-like-3/YM1). This sustained
immunosuppression was reduced through inhibition of the
myeloid receptor CCR1, providing further indication that
myeloid cells promote tumor progression and have complex
and compensatory roles in the PDA TME.

Myeloid Single Cell Transcriptomics
Recent single cell RNA sequencing efforts in PDA have

revealed significant heterogeneity within myeloid cell sub-
sets that confirm the M1/M2 designation is an over-
simplification. Analysis of human PDA tumor samples
compared with adjacent normal pancreas tissue identified
populations of neutrophils, classical monocytes/macro-
phages, resident macrophages, and alternatively activated
macrophages.115 MARCO, APOE, SPP1, and C1QA emerged as
novel macrophage markers that warrant further evaluation
in PDA.115 Another study identified similar myeloid pop-
ulations in human PDA compared with adjacent normal
pancreas tissue with similar gene expression profiles.116

Myeloid cells are shown to have heterogenous expression
of immune checkpoint receptors (LGALS9, CD274, PVR,
CSF1R, SIRPA, HLA-DQA1).116 Putative immune checkpoint
interactions were up-regulated in PDA compared with
adjacent normal samples, and these interactions were
heterogenous across patients.116 Because of the over-
whelming lack of response to immunotherapy approaches,
these data suggest the heterogeneity of immune checkpoints
across patients is a contributing factor, and we should
consider the possibility of precision medicine in immuno-
modulatory approaches.

Two studies used single cell transcriptomics analysis to
evaluate the immune response during mouse PDA pro-
gression.117,118 Consistent with previous reports, macro-
phages were identified as one of the major immune cells
infiltrating early lesions. Through unbiased clustering, 3
macrophage populations were identified in early lesions,
whereas only 2 macrophage populations were identified in
late/tumor samples.118 The macrophage population only
found in early lesion samples had expression of Fn1, Lyz1,
and Ear1, suggesting this population is involved in wound
repair.118 There was not an equivalent macrophage popu-
lation to this one seen in the late-stage tumor samples,
suggesting macrophage populations change over the course
of disease progression. In a separate study, macrophages
from late lesions compared with early lesion samples had an
increase in the chemokines, Cxcl1, Cxcl2, and Ccl8, which
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have known roles in recruitment of MDSCs (Cxcl1, Cxcl2)
and macrophages (Ccl8), suggesting sustained infiltration of
myeloid cells as carcinogenesis progresses.117 These mac-
rophages up-regulated markers of alternative activation
(Mrc1), further supporting the concept that macrophage
polarization changes in later stages of PDA. Importantly,
these combined efforts have revealed novel myeloid cells
markers with potential functional importance in PDA.

Conclusions and Future Directions
In this review we have defined myeloid cell subsets in

the PDA TME and discussed their role in myeloid cell-
mediated immune suppression. We highlight the impor-
tance of myeloid cells through disease progression from
initial formation of ADM to carcinogenesis to the formation
of the pre-metastatic niche leading to ultimate tumor cell
dissemination. Current myeloid targeted approaches in
combination with chemotherapy and immunotherapy regi-
mens relieve this robust immune suppression and activate
T-cell effector responses.

However, many questions remain unanswered. The
mechanisms behind the inverse correlation of myeloid cell
and T cells have yet to be fully elucidated. Although we have
some understanding of the pathways involved, we are
lacking the complete picture, especially with respect to the
complex compensatory networks that appear to overcome
monolithic approaches. A better understanding of the
mechanisms behind myeloid-mediated immune suppression
will uncover novel and hopefully targetable components.
With the large influx of single cell transcriptomics data, it
has become even more evident that the M1/M2 designation
is a gross oversimplification and does not accurately mirror
the in vivo heterogeneity of macrophages. These reports
have uncovered novel macrophage markers that may have
functional implications and should be evaluated. Most of the
MDSC work in PDA has targeted the PMN-MDSC subset.
Because the M-MDSCs are more immunosuppressive in
nature, selectively targeting this cell population is of inter-
est. Myeloid cells comprise the largest part of the TME and
are ideal targets to reverse immune suppression.Q7
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