243 research outputs found

    Experimental investigation of the effects of acute exercise on memory interference

    Get PDF
    Background: Among other factors, including the decay theory, interfering stimuli (proactive and retroactive interference; PI and RI) may influence the encoding and consolidation of target information. Acute exercise can enhance episodic memory function, but no experiments have evaluated whether exercise can attenuate PI and RI effects on memory, which was the purpose of this experiment.Methods: Twenty young adults were randomized (via computer program) into one of 6 experimental groups (N=120, n=20 per group), including 3 PI (G1, G2, and G3) and 3 RIgroups (G4, G5, and G6). Those in G1 and G4 exercised prior to a 10-list AB/AC paradigm with interference; G2 and G5 did not exercise but had interference; and G3 and G6 were the control groups with no exercise and no interference.Results: The mean (95% CI) number of correctly recalled word pairs across the 6 respective groups was 2.4 (1.2-3.5), 2.4 (1.3-3.5), 5.1 (3.9-6.3), 6.9 (5.7-8.0), 5.0 (4.2-5.8), and 6.1 (5.1-6.9) (FANOVA=11.7; P<0.001; η2=0.33). For PI, the control group (group 3) correctly recalled more word pairs (5.1) when compared to the exercise interference group (2.4; group 1) or the non-exercise interference group (2.4; group 2). The difference between group 1 and 3 (2.4 vs.5.1) was significant (P=0.003), as was group 2 vs. 3 (P=0.002). For the RI groups (groups 4-6),group 4 differed from group 5 (6.9 vs. 5.0; P=0.01), but there was no difference between group 4 and group 6 (P=0.25) or group 5 and group 6 (P=0.09).Conclusion: These preliminary findings suggest that acute exercise may be more beneficial for RI compared to PI, but additional experimental work is needed

    A minimal CRISPR-Cas3 system for genome engineering [preprint]

    Get PDF
    CRISPR-Cas technologies have provided programmable gene editing tools that have revolutionized research. The leading CRISPR-Cas9 and Cas12a enzymes are ideal for programmed genetic manipulation, however, they are limited for genome-scale interventions. Here, we utilized a Cas3-based system featuring a processive nuclease, expressed endogenously or heterologously, for genome engineering purposes. Using an optimized and minimal CRISPR-Cas3 system (Type I-C) programmed with a single crRNA, large deletions ranging from 7 - 424 kb were generated in Pseudomonas aeruginosa with high efficiency and speed. By comparison, Cas9 yielded small deletions and point mutations. Cas3-generated deletion boundaries were variable in the absence of a homology-directed repair (HDR) template, and successfully and efficiently specified when present. The minimal Cas3 system is also portable; large deletions were induced with high efficiency in Pseudomonas syringae and Escherichia coli using an “all-in-one” vector. Notably, Cas3 generated bi-directional deletions originating from the programmed cut site, which was exploited to iteratively reduce a P. aeruginosa genome by 837 kb (13.5%) using 10 distinct crRNAs. We also demonstrate the utility of endogenous Cas3 systems (Type I-C and I-F) and develop an “anti-anti-CRISPR” strategy to circumvent endogenous CRISPR-Cas inhibitor proteins. CRISPR-Cas3 could facilitate rapid strain manipulation for synthetic biological and metabolic engineering purposes, genome minimization, and the analysis of large regions of unknown function

    Towards the Development of Peptide Nanfilaments and Nanoropes as Smart Materials

    Get PDF
    Protein design studies using coiled coils have illustrated the potential of engineering simple peptides to self-associate into polymers and networks. Although basic aspects of self-assembly in protein systems have been demonstrated, it remains a major challenge to create materials whose large-scale structures are well determined from design of local protein–protein interactions. Here, we show the design and characterization of a helical peptide, which uses phased hydrophobic interactions to drive assembly into nanofilaments and fibrils (“nanoropes”). Using the hydrophobic effect to drive self-assembly circumvents problems of uncontrolled self-assembly seen in previous approaches that used electrostatics as a mode for self-assembly. The nanostructures designed here are characterized by biophysical methods including analytical ultracentrifugation, dynamic light scattering, and circular dichroism to measure their solution properties, and atomic force microscopy to study their behavior on surfaces. Additionally, the assembly of such structures can be predictably regulated by using various environmental factors, such as pH, salt, other molecular crowding reagents, and specifically designed “capping” peptides. This ability to regulate self-assembly is a critical feature in creating smart peptide biomaterials

    Unbiased Metagenomic Sequencing for Pediatric Meningitis in Bangladesh Reveals Neuroinvasive Chikungunya Virus Outbreak and Other Unrealized Pathogens.

    Get PDF
    The burden of meningitis in low-and-middle-income countries remains significant, but the infectious causes remain largely unknown, impeding institution of evidence-based treatment and prevention decisions. We conducted a validation and application study of unbiased metagenomic next-generation sequencing (mNGS) to elucidate etiologies of meningitis in Bangladesh. This RNA mNGS study was performed on cerebrospinal fluid (CSF) specimens from patients admitted in the largest pediatric hospital, a World Health Organization sentinel site, with known neurologic infections (n = 36), with idiopathic meningitis (n = 25), and with no infection (n = 30), and six environmental samples, collected between 2012 and 2018. We used the IDseq bioinformatics pipeline and machine learning to identify potentially pathogenic microbes, which we then confirmed orthogonally and followed up through phone/home visits. In samples with known etiology and without infections, there was 83% concordance between mNGS and conventional testing. In idiopathic cases, mNGS identified a potential bacterial or viral etiology in 40%. There were three instances of neuroinvasive Chikungunya virus (CHIKV), whose genomes were &gt;99% identical to each other and to a Bangladeshi strain only previously recognized to cause febrile illness in 2017. CHIKV-specific qPCR of all remaining stored CSF samples from children who presented with idiopathic meningitis in 2017 (n = 472) revealed 17 additional CHIKV meningitis cases, exposing an unrecognized meningitis outbreak. Orthogonal molecular confirmation, case-based clinical data, and patient follow-up substantiated the findings. Case-control CSF mNGS surveys can complement conventional diagnostic methods to identify etiologies of meningitis, conduct surveillance, and predict outbreaks. The improved patient- and population-level data can inform evidence-based policy decisions.IMPORTANCE Globally, there are an estimated 10.6 million cases of meningitis and 288,000 deaths every year, with the vast majority occurring in low- and middle-income countries. In addition, many survivors suffer from long-term neurological sequelae. Most laboratories assay only for common bacterial etiologies using culture and directed PCR, and the majority of meningitis cases lack microbiological diagnoses, impeding institution of evidence-based treatment and prevention strategies. We report here the results of a validation and application study of using unbiased metagenomic sequencing to determine etiologies of idiopathic (of unknown cause) cases. This included CSF from patients with known neurologic infections, with idiopathic meningitis, and without infection admitted in the largest children's hospital of Bangladesh and environmental samples. Using mNGS and machine learning, we identified and confirmed an etiology (viral or bacterial) in 40% of idiopathic cases. We detected three instances of Chikungunya virus (CHIKV) that were &gt;99% identical to each other and to a strain previously recognized to cause systemic illness only in 2017. CHIKV qPCR of all remaining stored 472 CSF samples from children who presented with idiopathic meningitis in 2017 at the same hospital uncovered an unrecognized CHIKV meningitis outbreak. CSF mNGS can complement conventional diagnostic methods to identify etiologies of meningitis, and the improved patient- and population-level data can inform better policy decisions

    Genetic contributions to visuospatial cognition in Williams syndrome: insights from two contrasting partial deletion patients

    Get PDF
    Background Williams syndrome (WS) is a rare neurodevelopmental disorder arising from a hemizygotic deletion of approximately 27 genes on chromosome 7, at locus 7q11.23. WS is characterised by an uneven cognitive profile, with serious deficits in visuospatial tasks in comparison to relatively proficient performance in some other cognitive domains such as language and face processing. Individuals with partial genetic deletions within the WS critical region (WSCR) have provided insights into the contribution of specific genes to this complex phenotype. However, the combinatorial effects of different genes remain elusive. Methods We report on visuospatial cognition in two individuals with contrasting partial deletions in the WSCR: one female (HR), aged 11 years 9 months, with haploinsufficiency for 24 of the WS genes (up to GTF2IRD1), and one male (JB), aged 14 years 2 months, with the three most telomeric genes within the WSCR deleted, or partially deleted. Results Our in-depth phenotyping of the visuospatial domain from table-top psychometric, and small- and large-scale experimental tasks reveal a profile in HR in line with typically developing controls, albeit with some atypical features. These data are contrasted with patient JB’s atypical profile of strengths and weaknesses across the visuospatial domain, as well as with more substantial visuospatial deficits in individuals with the full WS deletion. Conclusions Our findings point to the contribution of specific genes to spatial processing difficulties associated with WS, highlighting the multifaceted nature of spatial cognition and the divergent effects of genetic deletions within the WSCR on different components of visuospatial ability. The importance of general transcription factors at the telomeric end of the WSCR, and their combinatorial effects on the WS visuospatial phenotype are also discussed

    Pulmonary Metagenomic Sequencing Suggests Missed Infections in Immunocompromised Children

    Get PDF
    This article is made available for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing.BACKGROUND: Despite improved diagnostics, pulmonary pathogens in immunocompromised children frequently evade detection, leading to significant mortality. Therefore, we aimed to develop a highly sensitive metagenomic next-generation sequencing (mNGS) assay capable of evaluating the pulmonary microbiome and identifying diverse pathogens in the lungs of immunocompromised children. METHODS: We collected 41 lower respiratory specimens from 34 immunocompromised children undergoing evaluation for pulmonary disease at 3 children's hospitals from 2014-2016. Samples underwent mechanical homogenization, parallel RNA/DNA extraction, and metagenomic sequencing. Sequencing reads were aligned to the National Center for Biotechnology Information nucleotide reference database to determine taxonomic identities. Statistical outliers were determined based on abundance within each sample and relative to other samples in the cohort. RESULTS: We identified a rich cross-domain pulmonary microbiome that contained bacteria, fungi, RNA viruses, and DNA viruses in each patient. Potentially pathogenic bacteria were ubiquitous among samples but could be distinguished as possible causes of disease by parsing for outlier organisms. Samples with bacterial outliers had significantly depressed alpha-diversity (median, 0.61; interquartile range [IQR], 0.33-0.72 vs median, 0.96; IQR, 0.94-0.96; P < .001). Potential pathogens were detected in half of samples previously negative by clinical diagnostics, demonstrating increased sensitivity for missed pulmonary pathogens (P < .001). CONCLUSIONS: An optimized mNGS assay for pulmonary microbes demonstrates significant inoculation of the lower airways of immunocompromised children with diverse bacteria, fungi, and viruses. Potential pathogens can be identified based on absolute and relative abundance. Ongoing investigation is needed to determine the pathogenic significance of outlier microbes in the lungs of immunocompromised children with pulmonary disease
    corecore