89 research outputs found

    The role of proteasome inhibitors in multiple myeloma bone disease and bone metastasis: Effects on osteoblasts and osteocytes

    Get PDF
    The alterations of bone remodeling are typical of multiple myeloma (MM) patients where the uncoupled and unbalanced bone remodeling caused the onset of osteolytic lesions. Moreover, bone metastasis occurs in the majority of patients with breast and prostate cancer. Skeletal-related events negatively impact on quality of life by increasing the vulnerability to fractures. Several bone-targeting treatments have been developed to control bone pain and pathological fractures, including bisphosphonates and Denosumab. Nevertheless, these agents act by inhibiting osteoclast activity but do not improve bone formation. Proteasome inhibitors (PIs) have shown bone anabolic effects and encouraging results in stimulating osteoblast differentiation and bone healing. Among these, the first-in-class bortezomib and the second-generation PIs, carfilzomib, and ixazomib regulate the bone remodeling process by controlling the degradation of several bone proteins. PIs have been recently proven to also be efficacious in blocking MM-induced osteocyte death providing new possible therapeutic use in the management of bone loss. PIs have significant side effects that limit their use as bone anabolic strategy. Multiple alternative approaches have been made. The conjugation of PIs with bisphosphonates, which can target them to bone, showed good results in terms of bone anabolic activity. However, the clinical implications of these effects require further investigations

    Role of 1q21 in multiple myeloma: From pathogenesis to possible therapeutic targets

    Get PDF
    Multiple myeloma (MM) is characterized by an accumulation of malignant plasma cells (PCs) in the bone marrow (BM). The amplification of 1q21 is one of the most common cytogenetic abnormalities occurring in around 40% of de novo patients and 70% of relapsed/refractory MM. Patients with this unfavorable cytogenetic abnormality are considered to be high risk with a poor response to standard therapies. The gene(s) driving amplification of the 1q21 amplicon has not been fully studied. A number of clear candidates are under investigation, and some of them (IL6R, ILF2, MCL-1, CKS1B and BCL9) have been recently proposed to be potential drivers of this region. However, much remains to be learned about the biology of the genes driving the disease progression in MM patients with 1q21 amp. Understanding the mechanisms of these genes is important for the development of effective targeted therapeutic approaches to treat these patients for whom effective therapies are currently lacking. In this paper, we review the current knowledge about the pathological features, the mechanism of 1q21 amplification, and the signal pathway of the most relevant candidate genes that have been suggested as possible therapeutic targets for the 1q21 amplicon

    Transition probabilities for general birth-death processes with applications in ecology, genetics, and evolution

    Full text link
    A birth-death process is a continuous-time Markov chain that counts the number of particles in a system over time. In the general process with nn current particles, a new particle is born with instantaneous rate λn\lambda_n and a particle dies with instantaneous rate μn\mu_n. Currently no robust and efficient method exists to evaluate the finite-time transition probabilities in a general birth-death process with arbitrary birth and death rates. In this paper, we first revisit the theory of continued fractions to obtain expressions for the Laplace transforms of these transition probabilities and make explicit an important derivation connecting transition probabilities and continued fractions. We then develop an efficient algorithm for computing these probabilities that analyzes the error associated with approximations in the method. We demonstrate that this error-controlled method agrees with known solutions and outperforms previous approaches to computing these probabilities. Finally, we apply our novel method to several important problems in ecology, evolution, and genetics
    corecore