24 research outputs found

    Analytical solutions of the Arrhenius-Semenov problem for constant volume burn

    Full text link
    Analytical solutions to the Semenov thermal ignition problem for constant volume burn governed by Arrhenius reaction kinetics are derived. Specifically, an approximate analytical solution technique for the Arrhenius-Semenov differential equation is derived for reaction orders n∈R>0n \in \mathbb{R}_{>0} and exact solutions are also constructed for reaction orders n∈N:n≀3n \in \mathbb{N}: n \leq 3. The approximation technique relies on expansion of the respective nondominant terms in the differential equation at the lower and upper bounds of the reaction progress variable in order to create a pair of integrable series. The two integrated series are then connected to create a single continuous analytical solution. Excellent agreement is observed between the analytical approximation and solutions obtained numerically. The presented approximation constitutes a simple and robust strategy for solving the Arrhenius-Semenov problem analytically

    Persistence of transition state structure in chemical reactions driven by fields oscillating in time

    Get PDF
    Chemical reactions subjected to time-varying external forces cannot generally be described through a fixed bottleneck near the transition state barrier or dividing surface. A naive dividing surface attached to the instantaneous, but moving, barrier top also fails to be recrossing-free. We construct a moving dividing surface in phase space over a transition state trajectory. This surface is recrossing-free for both Hamiltonian and dissipative dynamics. This is confirmed even for strongly anharmonic barriers using simulation. The power of transition state theory is thereby applicable to chemical reactions and other activated processes even when the bottlenecks are time-dependent and move across space

    Chemical reactions induced by oscillating external fields in weak thermal environments

    Get PDF
    Chemical reaction rates must increasingly be determined in systems that evolve under the control of external stimuli. In these systems, when a reactant population is induced to cross an energy barrier through forcing from a temporally varying external field, the transition state that the reaction must pass through during the transformation from reactant to product is no longer a fixed geometric structure, but is instead time-dependent. For a periodically forced model reaction, we develop a recrossing-free dividing surface that is attached to a transition state trajectory [T. Bartsch, R. Hernandez, and T. Uzer, Phys. Rev. Lett. 95, 058301 (2005)]. We have previously shown that for single-mode sinusoidal driving, the stability of the time-varying transition state directly determines the reaction rate [G. T. Craven, T. Bartsch, and R. Hernandez, J. Chem. Phys. 141, 041106 (2014)]. Here, we extend our previous work to the case of multi-mode driving waveforms. Excellent agreement is observed between the rates predicted by stability analysis and rates obtained through numerical calculation of the reactive flux. We also show that the optimal dividing surface and the resulting reaction rate for a reactive system driven by weak thermal noise can be approximated well using the transition state geometry of the underlying deterministic system. This agreement persists as long as the thermal driving strength is less than the order of that of the periodic driving. The power of this result is its simplicity. The surprising accuracy of the time-dependent noise-free geometry for obtaining transition state theory rates in chemical reactions driven by periodic fields reveals the dynamics without requiring the cost of brute-force calculations

    Energy transport between heat baths with oscillating temperatures

    Full text link
    Energy transport is a fundamental physical process that plays a prominent role in the function and performance of myriad systems and technologies. Recent experimental measurements have shown that subjecting a macroscale system to a time-periodic temperature gradient can increase thermal conductivity in comparison to a static temperature gradient. Here, we theoretically examine this mechanism in a nanoscale model by applying a stochastic Langevin framework to describe the energy transport properties of a particle connecting two heat baths with different temperatures, where the temperature difference between baths is oscillating in time. Analytical expressions for the energy flux of each heat bath and for the system itself are derived for the case of a free particle and a particle in a harmonic potential. We find that dynamical effects in the energy flux induced by temperature oscillations give rise to complex energy transport hysteresis effects. The presented results suggest that applying time-periodic temperature modulations is a potential route to control energy storage and release in molecular devices and nanosystems
    corecore