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Persistence of transition-state structure in chemical reactions driven by fields oscillating in time
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Chemical reactions subjected to time-varying external forces cannot generally be described through a
fixed bottleneck near the transition-state barrier or dividing surface. A naive dividing surface attached to the
instantaneous, but moving, barrier top also fails to be recrossing-free. We construct a moving dividing surface in
phase space over a transition-state trajectory. This surface is recrossing-free for both Hamiltonian and dissipative
dynamics. This is confirmed even for strongly anharmonic barriers using simulation. The power of transition-state
theory is thereby applicable to chemical reactions and other activated processes even when the bottlenecks are
time dependent and move across space.
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A ubiquitous problem in physics concerns the determi-
nation of the mechanism and rate of crossing a bottleneck
from initial to final states. In the usual cases, the bottleneck
is fixed in time and corresponds to a saddle point (or a ridge
of the potential in dimension 2 or higher) that determines the
dynamics. These structures lose their dynamical significance
if the potential is time dependent. However, in those cases in
which the barrier moves up and down, perhaps even stochas-
tically, an invariant structure associated with the bottleneck
persists [1–6]. This is perhaps not surprising because the saddle
point of the potential, that is, the barrier top, remains fixed.
However, what if the position associated with the barrier top
moves with time and hence the bottleneck is not fixed? In this
Rapid Communication we show that under some conditions,
namely, when the motion of the barrier top is periodic, there
still exists a fixed structure associated with the bottleneck, the
transition state trajectory [7,8].

This result is of particular interest to chemical physics in
which the determination of rates is a central concern and
increasingly rates must be determined in systems that are
driven far from equilibrium. Specifically, the response of a
chemical constituent to the external forcing by oscillating
fields can strongly influence the mechanism and rate in which
a reactant is transformed to a product. Organic polarization
synthesis [9] and colloidal and macromolecular structure
assembly [10–13] offer examples of such time-dependent
chemical transformations driven under kinetic control.

For field-induced molecular dissociation [14], formalde-
hyde (H2CO) [15–17] can be considered as a prototypical
example. The potential energy surface (PES) of formaldehyde
contains two dissociation channels (H2 + CO and H + HCO)
and isomerization channels to cis-HCOH and trans-HCOH
isomers [18,19]. When H2CO is subjected to the influence of
an external laser field, it is directionally forced. This forcing
deforms the PES and influences the reaction rates as well as the
placement of the transition-state dividing surface. Interest in
the construction of a recrossing-free dividing surface (DS)
in the bottleneck region of phase space, where reactive
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trajectories must cross, is not confined to the field of chemical
physics [20]. For example, bottlenecks play an important role
in the dynamics of atoms [21], clusters [22], microjunctions
[23], asteroids [24], and cosmological space-time models [25].

In the absence of a driving field, transition-state theory
(TST) [20,26–28] offers a formally exact rate calculation
in chemically reactive systems. The methodological hur-
dle in such calculations is the construction of a hypersurface
in phase space that separates reactant and product regions
and is crossed only once by all reactive trajectories. If such a
DS cannot be constructed, the TST rate is no longer exact
but only an upper bound to the rate. Indeed, variational
transition-state theory [29–34] has been extremely effective
at providing relatively-high-accuracy approximations to the
rate and the DS. The aim of this Rapid Communication is
to resolve the structure of the transition-state geometry in
situations where the transition state is not fixed because the
driving field is oscillatory, advancing previous work by two of
us on time-dependent TST [35].

In an autonomous system with two degrees of freedom,
Pollak and co-workers have shown that the optimal dividing
surface is an unstable periodic orbit (PO) [36–39]. Its pro-
jection into configuration space provides a dividing surface
that is locally recrossing-free. In systems with three or more
degrees of freedom, this periodic orbit is generalized to a
normally hyperbolic invariant manifold (NHIM) [20,40–47].
Attached to the NHIM are stable and unstable manifolds. These
manifolds form phase-space separatrices that distinguish be-
tween reactive and nonreactive trajectories and also constitute
the pathways by which reactive trajectories are funneled from
reactant to product through the transition state [43,44,47]. The
central result of this Rapid Communication, elaborated below,
is that there is a sense in which this structure persists even
when the chemical reaction is driven by an external oscillating
field as, for example, from an external electric field [48,49].

A particle of unit mass propagating from an initial position
x0 and surmounting a moving one-dimensional energy barrier
serves as a paradigm for the present approach. The barrier
is moving with a time-dependent instantaneous position E(t)
and is specified by

U (x) = − 1
2ω2

b(x − E(t))2 − 1
4ε(x − E(t))4. (1)
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It leads to the equation of motion

ẍ + γ ẋ = ω2
b(x − E(t)) + ε(x − E(t))3, (2)

where E(t) is a driving field, γ is a dissipative emission
parameter, ωb is the barrier frequency, and ε is an anharmonic
coefficient. We consider here both the harmonic (ε = 0) and
anharmonic (ε �= 0) cases. In the latter case, the reacting
particle’s degree of freedom is nonlinearly coupled to the
motion of the driving field.

When γ = 0, the system is Hamiltonian and the dynamics
are representative of a chemical reaction forced by an external
field, such as a laser. The coupling of a molecule’s dipole
moment with an external field is known to accelerate the
dynamics of a chemical reaction. The collinear H + H2

exchange reaction is an example of a physical system that
can be represented through (2). The asymmetric stretch of
the system creates a time-dependent dipole in the region of the
one-dimensional TS. The rate of barrier crossing is accelerated
when the dipole couples with an external driving field [50].

For dissipative (γ > 0) systems, Eq. (2) is a classical
approximation for a field-induced reaction undergoing spon-
taneous emission along a reaction coordinate [51]. Herein we
show that when a chemical reaction is forced by a temporally
periodic external field, there persists a strictly recrossing-free
DS. This recrossing-free criterion is satisfied even for systems
that are undergoing a cooling process, i.e., γ > 0.

For every E(t) there exists a specific trajectory that remains
close to the energy barrier for all time and never descends
into either product or reactant regions. This trajectory has
been termed the transition-state (TS) trajectory [7,8,52–54].
We will use a time-dependent DS that is located at the
instantaneous position of the TS trajectory and show that
this DS is recrossing-free, thus confirming that a transition
state persists in nonautonomous systems. However, it does not
correspond to the location of an energetic saddle point, i.e., an
activated complex.

In the harmonic (ε = 0) case for an arbitrary driving field
E(t), Eq. (2) can be solved exactly, with the eigenvalues λs,u =
− 1

2 (γ ±
√

γ 2 + 4ω2
b) corresponding to the stable and unstable

manifolds. Particular solutions of Eq. (2) can be expressed
through the S functionals [8,48]

Sτ [μ,g; t] =
{
− ∫ ∞

t
g(τ ) exp[μ(t − τ )]dτ for Re μ > 0

+ ∫ t

−∞ g(τ ) exp[μ(t − τ )]dτ for Re μ < 0,

(3)

where μ is an eigenvalue of (2) and g(τ ) is a time-dependent
modulation to the autonomous intramolecular potential. The
general solution will contain stable and unstable components,
given by (3), and an exponential term that must be omitted to
obtain a bounded solution [8]. The TS trajectory is therefore
given by [53,54]

x‡(t) = ω2
b

λu − λs
(S[λs,E; t] − S[λu,E; t]),

v‡(t) = ω2
b

λu − λs
(λsS[λs,E; t] − λuS[λu,E; t]).

(4)

FIG. 1. (Color online) Time evolution of x(t) (left) and v(t)
(right) for a swarm of 2000 trajectories following the equation of
motion (2). The transition-state trajectory is shown in dashed white.
The trajectories are colored according to the difference in initial
velocity |V ‡ − v0| with respect to the critical velocity V ‡ as marked.
The colors range from dark blue to dark red (or black to gray
in grayscale) and are scaled, increasingly, by this difference. The
parameters are ε = 2, � = 5, γ = 3, a = 1, and ϕ = 0.

Equation (4) gives the TS solution for any E(t), provided only
that ε = 0 and E(t) is polynomially bounded for t → ±∞
such that the S functionals exist.

We now restrict the discussion to sinusoidally oscillating
fields of the form

E(t) = a sin(�t + ϕ), (5)

although the methods presented herein apply equally to
arbitrary periodic oscillations. With this restriction, the TS
trajectory, given by Eq. (4), is an unstable PO whose period
2π/� is the period of the external driving. In systems with
anharmonic barriers, we will therefore choose an unstable PO
close to the barrier top as the TS trajectory. The TS trajectory
acts like a moving saddle point: Like the equilibrium point
on the autonomous barrier, it remains in the transition region
for all time. Trajectories that begin on the stable manifold
approach it, asymptotically, as t → ∞. All other trajectories
move away in the infinite future.

Figure 1 shows the time evolution of x(t) and v(t) for a
set of trajectories starting at some point x0 to the left of the
barrier. Specifically, the potential (1) describes an inverted
(an)harmonic oscillator. Initial velocities are sampled from a
Boltzmann distribution q(v). For all numerical simulations in
this Rapid Communication, we have chosen units such that
the particle mass, the barrier frequency ωb, and the thermal
energy kBT of the initial Boltzmann distribution are unity;
all other parameters are dimensionless. Most trajectories in
Fig. 1 quickly move away from the DS in accordance with the
unstable nature of the PO. As a consequence of this instability,
the Poincaré return map that records the phase-space position
of a trajectory after each period of the driving contains very
little information. Though not shown, it has a single fixed point
arising from the TS trajectory and only a few returns for the
escaping trajectories.

Some trajectories, however, remain close to the TS trajec-
tory for long times. Indeed, given an initial position, there
exists a unique trajectory that approaches the TS trajectory
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asymptotically with increasing time. It can be specified by its
initial velocity, which we call the critical velocity V ‡. This
particular trajectory lies on the stable manifold of the TS
trajectory (which by definition contains all those trajectories
that asymptotically approach the TS trajectory as t → ∞).
Trajectories close to the stable manifold are captured in the
vicinity of the TS trajectory for a long time before they finally
descend into either the reactant or the product wells. The stable
manifold itself contains trajectories that will never descend. It
therefore separates reactive from nonreactive trajectories in
phase space: Trajectories whose initial velocity is larger than
V ‡ are reactive, those with initial velocities below V ‡ are not.

In our numerical computation, we choose initial conditions
on the line x = x0 = −0.1. The stable manifold intersects this
line at the point (x0,V

‡). In the present case, the critical velocity
is V ‡ ≈ 0.819, as highlighted in Fig. 1. Note that it is not the
velocity of the instantaneous barrier top, which is a� = 5 at
t = 0.

The TS trajectory also defines a moving DS x = x‡(t) that
can be used to track the reactant and product populations in the
generic reaction R → P. The normalized reactant population
PR(t) is the fraction of trajectories that are on the reactant
side of the TS trajectory, relative to the moving DS, at time
t . In a two-state model, the normalized product population is
PP(t) = 1 − PR(t). A monotonic behavior in these populations
indicates that the chosen DS is recrossing-free.

A reactive trajectory will cross the moving DS x = x‡(t) at
a time t‡(v) that depends on the initial velocity. At any time
t > 0, the product region x(t) − x‡(t) > 0, to the right of the
moving surface, will contain all those trajectories that cross
the surface at a time t‡ < t . These are the trajectories that have
an initial velocity of at least vmin, where t‡(vmin − v‡(0)) =
t . From this condition and the expression of t‡ derived in
Ref. [52], for a harmonic barrier, vmin can be obtained exactly
and is given by

vmin(t) = v‡(0) + λue
−λut − λse

−λst

e−λut − e−λst
[x0 − x‡(0)]. (6)

The population of the reactant region at time t is therefore

PR(t) =
∫ vmin(t)

−∞
q(v)dv. (7)

The critical velocity V ‡ is the long-time limit of vmin(t). Be-
cause V ‡ is a time-invariant identifier of reactive trajectories,
the reactant population in the long-time limit is

PR(∞) =
∫ V ‡

−∞
q(v)dv, (8)

which is the fraction of trajectories that never surmount the
barrier.

For an anharmonic barrier, Eqs. (7) and (8) are valid,
although vmin(t) is, in general, not known exactly. Figure 2
illustrates trajectories for various strengths of the anharmonic-
ity. The critical velocity, shown as a red circle, marks the
boundary between reactive and nonreactive trajectories. The
reactive trajectories trace the forward branch of the unstable
manifold while the nonreactive trajectories trace the backward
branch. The location of a trajectory’s initial velocity with
respect to V ‡ decides which branch the trajectory follows as

FIG. 2. (Color online) Swarm of 100 trajectories starting at x0

(dashed black line) propagated by Eq. (2) at ε = 0, 5, and 10. Reactive
and nonreactive trajectories are identified by labeled arrows. The TS
trajectory is a periodic orbit in solid black. The critical velocity V ‡

lies at the vertex of x0 and the gray (red) line. The parameters are
� = 5, γ = 1, a = 1, and ϕ = 0.

it moves toward its final state. It can also be seen in Fig. 2
that V ‡ increases with increasing ε and thus increasing the
anharmonicity decreases the amount of product formed. This
increase in V ‡ is due to the curvature in the stable and unstable
manifolds that is induced by anharmonicity.

To test that the DS is recrossing-free, we simulated ensem-
bles of 106 trajectories with an initial position x0 = −0.1 to
the left of the instantaneous barrier top and initial velocities
sampled from a Boltzmann distribution. For every time t we
compute the normalized reactant population PR(t) and the
normalized product population PP(t). The time evolution of
PR(t) for varying parameters values is shown in Fig. 3. The

(a)

(b)

(c)

(d)

FIG. 3. (Color online) Reactant populations as a function of time
for the (a) harmonic and (b) anharmonic barrier. The corresponding
TS trajectories are shown in (c) and (d), respectively. In all cases,
a = 1 and ϕ = 0.
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FIG. 4. (Color online) Time dependence of the reactant PR and
product PP populations for harmonic and anharmonic barriers
obtained relative to the instantaneous barrier top (dashed lines) and
the TS trajectory (solid lines). All other parameters are as in Fig. 2.

harmonic case is shown in Fig. 3(a) with the corresponding
TS trajectories in Fig. 3(c). The anharmonic case is shown in
Fig. 3(b) with corresponding TS trajectories shown in Fig. 3(d).
In all cases, the DS is free of recrossings, as is evident
from the observation that the reactant populations decrease
monotonically.

This is in stark contrast to the reactant and product
populations that are obtained from a DS attached to the

instantaneous barrier top. That surface can be recrossed many
times. As a consequence, reactant and product populations
determined from this surface are not monotonic, but show
pronounced oscillations as a function of time, as shown
in Fig. 4. Using the instantaneous barrier top as a DS, in
accordance with the canonical view of the transition state, an
observer would alternatingly overestimate and underestimate
the reactive portion of the ensemble of initial conditions.
Populations obtained from the recrossing-free DS not only
converge faster to their long-time asymptotic values, they
also approach these values monotonically and thereby provide
rigorous upper or lower bounds for the limiting values.

In summary, we have studied the dynamics of a reactant
particle surmounting an oscillating energy barrier. A dividing
surface attached to a bounded transition-state trajectory has
been constructed that is rigorously free from recrossing,
even when the dynamics is strongly anharmonic, strongly
dissipative, or strongly driven. In addition, whether a trajectory
is reactive or not is determined by its location relative to
the stable manifold of the transition state trajectory. The
knowledge of the stable manifold therefore allows prediction
of the fate (reactive or nonreactive) of any trajectory, without
having to carry out a simulation. The validity of these results
has been confirmed by a numerical simulation of ensembles of
trajectories. The construction of this dividing surface allows
for a formally exact TST rate calculation in periodically driven
chemical reactions.
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