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Chemical reaction rates must increasingly be determined in systems that evolve under the control of
external stimuli. In these systems, when a reactant population is induced to cross an energy barrier
through forcing from a temporally varying external field, the transition state that the reaction must pass
through during the transformation from reactant to product is no longer a fixed geometric structure,
but is instead time-dependent. For a periodically forced model reaction, we develop a recrossing-free
dividing surface that is attached to a transition state trajectory [T. Bartsch, R. Hernandez, and T.
Uzer, Phys. Rev. Lett. 95, 058301 (2005)]. We have previously shown that for single-mode sinusoidal
driving, the stability of the time-varying transition state directly determines the reaction rate [G. T.
Craven, T. Bartsch, and R. Hernandez, J. Chem. Phys. 141, 041106 (2014)]. Here, we extend our
previous work to the case of multi-mode driving waveforms. Excellent agreement is observed between
the rates predicted by stability analysis and rates obtained through numerical calculation of the reactive
flux. We also show that the optimal dividing surface and the resulting reaction rate for a reactive system
driven by weak thermal noise can be approximated well using the transition state geometry of the
underlying deterministic system. This agreement persists as long as the thermal driving strength is
less than the order of that of the periodic driving. The power of this result is its simplicity. The
surprising accuracy of the time-dependent noise-free geometry for obtaining transition state theory
rates in chemical reactions driven by periodic fields reveals the dynamics without requiring the cost
of brute-force calculations. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4907590]

I. INTRODUCTION

Optimal control of reaction pathways in systems undergo-
ing configurational changes can be achieved through forcing
from tailored external fields. These fields can be tuned to
induce specific deformations on a potential energy surface,
providing control of state-to-state transitions.1–3 In these
processes, a formally exact classical rate calculation can be
obtained through modern-day transition state theory (TST).4–9

The principal assumption of microcanonical TST is that
there exists a hypersurface between reactant and product
confirmations that is crossed only once by reactive trajectories
during the traversal of a free energy barrier separating these
basins. The TST reaction rate is calculated from the flux
through this dividing surface (DS). If the DS is recrossed
by reactive trajectories, TST will give an overestimate to
the classical reaction rate. Determination of a recrossing-free
DS therefore leads to classically exact microcanonical TST
rates. If there exists a Boltzmann distribution of reactant states
during the reaction, then the Laplace transform of these rates
leads to a canonical TST rate that is also exact.

A phase space DS that is free of recrossings can be
constructed in conservative systems at energies close to the
reaction threshold. In systems with two degrees of freedom,

a)Author to whom correspondence should be addressed. Electronic mail:
hernandez@chemistry.gatech.edu.

the optimal DS is the configuration space projection of an un-
stable periodic orbit (PO).10–13 In systems with higher dimen-
sionality, the generalization of this PO is a normally hyperbolic
invariant manifold (NHIM).14–22 The NHIM bounds the TS,
being one less in dimension.16 It defines a recrossing-free
surface at energies below bifurcation thresholds.23–25 Reactive
trajectories are mediated by stable and unstable manifolds
(reaction pathways) attached to the NHIM. These pathways
persist even in reactions whose state-to-state transitions are
not dictated by purely configurational changes.26

In systems subjected to time-varying external forcing, the
characterization of the NHIM as a hypersphere of constant
energy breaks down. For example, field-matter interactions
constitute processes in which energy is exchanged with a
reacting system. These interactions lead to emergent and
controllable behavior in assembly phenomena,27–30 organic
synthesis,31 protein folding,32 the detection of DNA,33 and
photodissociation.34 Knowledge of the mechanism by which
these interactions mediate reactive flow provides a method-
ological tool in the design of molecular devices with unique
functionality.35–37

Materials that undergo conformational changes in re-
sponse to an external trigger offer examples of such emergent
technology.36,38–41 Stimuli such as thermal variations, electric
fields, and photoinduction have been used as triggers for the
conversion of chemical energy into mechanical work.37,42–44

Assemblies that convert chemical energy into directional

0021-9606/2015/142(7)/074108/13/$30.00 142, 074108-1 © 2015 AIP Publishing LLC
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motion can be achieved through isomerization reactions
which are induced either from light or applied electric
fields.35,45,46 In these responsive materials, controlling the
rate and pathway at which reactants transform to products
is fundamental to harness mechanical actions for applicative
purposes.

The aim of this paper is to develop a rate theory for
reactions that are driven by periodic external fields in weak
thermal environments. In the absence of noise, a dissipative
system that is periodically driven admits a DS that is free
of recrossings.47 This structure differs from the canonical
view of the TS wherein the TS is a structure fixed in time
at a saddle point on the potential energy surface. Here, we
develop a rate theory based on reactive flux through this
recrossing-free DS and the stability of the corresponding TS.
In Ref. 48, we found that the stability of the moving TS directly
determines the reaction rate for single-mode sinusoidal
driving. In conservative systems, stability analysis is known to
characterize molecular motions as well as determine the rate
of configurational transitions.24,49–52 Building on our previous
work, we test the viability of stability analysis to determine
reaction rates in systems driven by multi-mode waveforms
with no thermal driving. The extent to which the accuracy
of the rate theory relying on the noise-free geometry persists
in systems that are coupled to a thermal bath is also verified
through inclusion and variation of the thermal driving strength.

The outline of this paper is as follows: In Sec. II, a
dynamical system is introduced to model barrier crossings
in chemical reactions forced by periodic external fields. In
Sec. III, a dividing surface that is recrossing-free is constructed
for this model in the absence of thermal driving. Section IV
contains analytical theories to predict the reaction rates of
driven reactions by calculation of the reactive flux through this
dividing surface for both globally non-linear and locally linear
dynamics. Comparison to the computational rates, computed
from numerical integration of large ensembles of trajectories,
is presented in Sec. V. Although not considered earlier, the
effect of noise on the rate of these driven systems has also
been addressed in Sec. VI. We find that the rates computed
from the noise-free geometry are accurate up to relatively
large values of the friction and sometimes even in the thermal
regime.

II. MODEL DETAILS

The interaction of an external field with a reactant
species can strongly influence the mechanism and rate of
a reaction.3,53,54 As a paradigmatic example of a chemical
reaction driven under kinetic control, we consider a particle of
unit mass moving along a reaction coordinate x. The trajectory
of the particle begins at a position x0 on the reactant side of
an energy barrier that is moving in space under the influence
of a time-dependent external field E(t). The chosen potential
surface is the quartic form

U(x) = − 1
2ω

2
b(x − E(t))2 − 1

4 ϵ(x − E(t))4. (1)

The time dependent, instantaneous position of the moving
barrier top (BT) is specified by E(t).

With the inclusion of additional non-conservative dissi-
pation as well as stochastic driving forces, a particle at a phase
space point Γ = (x, v) moving according to the potential (1)
can be described by the Langevin equations of motion

ẋ = v,

v̇ = −γv + ω2
b(x − E(t)) + ϵ(x − E(t))3 + √2σ ξα(t), (2)

where γ ≥ 0 is a dissipation parameter, ωb is the barrier
frequency, and ϵ is an anharmonic coefficient. Thus, for ϵ , 0
the coordinate of the particle is non-linearly coupled to the
moving barrier. By restricting the anharmonic coefficient to
values ϵ ≥ 0, there is a single maximum in the potential located
at the BT. The random fluctuating force ξα(t) is Gaussian white
noise obeying the statistical properties

⟨ξα(t)⟩ = 0 and ⟨ξα(t)ξα(t ′)⟩ = δ(t − t ′), (3)

where α denotes a specific noise sequence. The strength of the
noise is varied through the parameter σ ≥ 0.

Depending on the geometry of U(x), initial conditions,
as well as the specific realization of the thermal environment
and the external field, a trajectory will either surmount the
energy barrier and form product or remain on the reactant side.
By calculation of the normalized flux of reactive trajectories
through the TS, the classical reaction rate for a system evolving
through (2) can be obtained.6

In this article, we consider periodic external driving of the
form

E(t) = a

ω∈Ωs

sin(ω t + ϕ), (4)

where Ωs ⊂ R is a finite set of frequencies. The waveforms
consist of a fundamental frequency Ω, and convolutions of
this fundamental with higher order partial frequencies. Three
frequency sets Ωs are considered: the single fundamental
frequency Ω1 = {Ω}, the fundamental and the second partial
frequencies Ω2 = {Ω,2Ω}, and the fundamental, second, and
third partial frequencies Ω3 = {Ω,2Ω,3Ω}. The fundamental
driving frequency Ω f is Ω for Ω1 and Ω2, and 2Ω for Ω3. The
products in Eq. (4) for the three sets can be written as finite
sums

E1(t) = a sin(Ωt + ϕ),
E2(t) = a

2
(cos(Ωt) + cos(3Ωt + 2ϕ)), (5)

E3(t) = a
4
(sin(2Ωt + ϕ) + sin(4Ωt + ϕ)
+ sin(6Ωt + 3ϕ) + sin(ϕ)),

where the leading order terms exhibit the characteristic
fundamental frequency. The maximum amplitude of each
waveform is set to unity by adjusting the value of the parameter
a accordingly. For the Ω1, Ω2, and Ω3 sets, a = 1, a ≈ 1.299,
and a ≈ 1.822, respectively. The functional forms of (5) are
shown in Fig. 1.

III. THE TRANSITION STATE TRAJECTORY

The construction and existence of a structure whose
configuration space projection is free of recrossings is
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FIG. 1. Functional forms of the pe-
riodic driving E(t) for the frequency
sets Ω1 (left), Ω2 (middle), and Ω3
(right) with fundamental driving fre-
quency Ω f = 4 are shown in the top
row. The corresponding TS trajectory
for each frequency set and anharmonic
parameter values ϵ ∈ {0,4,8} are shown
in the bottom row. Various extrema of
E(t) are denoted by circles with argu-
ments shown as dashed vertical lines.
The corresponding extrema of x‡(t) are
denoted by circles and colored accord-
ing to the respective ϵ value. Parameters
for all panels are σ = 0, γ = 1, and ϕ = 0
in dimensionless units.

dependent on the mechanism and geometry of a given reaction.
In an ion-pair dissociation, for example, Mullen et al.55,56

claimed that a recrossing-free DS does not exist, whereas
Truhlar and Garrett57 had earlier found that recrossings could
be eliminated through variation of the DS into an optimized
orientation. Although, we have not specifically addressed that
mechanism, we have previously shown that for a periodically
driven system with no thermal driving, an optimal (recrossing-
free) DS can be readily obtained. It is associated with an
unstable PO in the region of the BT.47 Moreover, a DS that
is free of recrossings is known to exist in thermally driven
systems for the case of a harmonic barrier.58,59 The time
evolution of the configuration space projection of this DS has
been termed the transition state trajectory.47,48,58–62 It has not
yet been proven that this is the only object which is free of
recrossings over an arbitrary finite time interval. Nevertheless,
all that is needed here is its existence, and the configuration
projection of the TS trajectory defines a DS that is recrossing-
free.

The TS trajectory is a specific trajectory that never
descends into either the product or reactant regions, remaining
bounded to BT for all time. For the system (2), it is a moving
saddle point to which stable and unstable manifolds can be
attached. All trajectories that exponentially approach the TS
trajectory as t → ∞ are contained on the stable manifold.
These trajectories will never descend from the BT region
and therefore separate reactive from nonreactive trajectories in
phase space. The unstable manifold is formed from trajectories
that approach the TS trajectory as t → −∞. The role of the
unstable manifold is less important for the purposes considered
here.

For an arbitrary driving E(t) of a harmonic (ϵ = 0)
potential, the equations of motion can be solved exactly and
an exact form of the TS trajectory can be obtained. The
eigenvalues of (2),

λs,u = −
1
2

(
γ ±


γ2 + 4ω2

b

)
, (6)

correspond to the stable and unstable manifolds. The S
functionals54,59

Sτ[µ,g; t] =



−
 ∞

t

g(τ) exp(µ(t − τ)) dτ : Re µ > 0,

+

 t

−∞
g(τ) exp(µ(t − τ)) dτ : Re µ < 0,

(7)

obtained as a Green’s function solution, suppress the transient
exponential factor in the solution and return only the equilib-
rium portion. In the absence of thermal driving (σ = 0), the TS
trajectory for a harmonic barrier can therefore be expressed
as47,48,61,62

x‡(t) = ω2
b

λu − λs
(S[λs,E; t] − S[λu,E; t]) ,

v‡(t) = ω2
b

λu − λs
(λsS[λs,E; t] − λuS[λu,E; t]) .

(8)

For the case of T-periodic motion of a harmonic barrier,
the TS trajectory can be identified more easily by looking for
a bounded solution to the equations of motion. For the single
frequency Ω1 case, the Ansatz

x‡1(t) = A sin(Ωt + ϕ) + B cos(Ωt + ϕ) (9)

yields the solution

A = A1, B = B1, (10)

where

Ak = a
ω2

b(ω2
b + (kΩ)2)

(γkΩ)2 + (ω2
b + (kΩ)2)2

,

Bk = a
ω2

bγkΩ

(γkΩ)2 + (ω2
b + (kΩ)2)2

.

(11)

In the absence of friction, γ = 0, this simplifies to

A1 = a
1

1 +Ω2/ω2
b

, B1 = 0. (12)

In this case, the TS trajectory will oscillate in phase with the
barrier, but with smaller amplitude A1 < a.

For the Ω2 and Ω3 cases, Ansätze can be constructed
through Fourier series expansion of Eq. (4) yielding the
solutions

x‡2(t) = 1
2 (A1 cos(Ωt) − B1 sin(Ωt)
− A3 cos(3Ωt + 2ϕ) + B3 sin(3Ωt + 2ϕ)) (13)

and

x‡3(t) = 1
4 (A2 sin(2Ωt + ϕ) + B2 cos(2Ωt + ϕ)
+ A4 sin(4Ωt + ϕ) + B4 cos(4Ωt + ϕ)
− A6 sin(6Ωt + 3ϕ) − B6 cos(6Ωt + 3ϕ)
+ a sin(ϕ)), (14)

respectively.
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For periodically driven anharmonic barriers (ϵ , 0), the
TS trajectory remains an unstable PO47 but it does not admit
to an exact solution of the system of Eq. (2). Nevertheless,
the phase space vector of the TS trajectory Γ‡ = (x‡(t), v‡(t))
is a bounded solution to the equations of motion. To find this
bounded solution to arbitrary accuracy, numerical Newton-
Raphson root finding methods were applied.

The dynamics of x‡(t), shown in Fig. 1, illustrate the
result that the instantaneous position of the TS trajectory does
not correspond to the energetic maximum of the potential
surface. For dissipative systems (γ , 0), x‡(t) will either lag
behind in phase, as is the case for both the Ω1 and Ω3 sets, or
advance in phase as is the case for the Ω2 set, with respect
to motion defined by E(t). Also note that x‡(t) oscillates
with a smaller amplitude than E(t). Thus, even for in-phase
oscillations, e.g., when γ = 0, it will not correspond to the
location of an energetic saddle point. Figure 1 also shows
the dependence of x‡(t) on the anharmonic parameter ϵ . As
ϵ is increased, the curvature of the energy barrier increases.
Non-intuitively, this results in a larger amplitude of oscillation
for x‡(t) to remain bounded to the BT. This trend persists for
all Ωs.

For dynamical analysis, it is advantageous to introduce
a coordinate system which has a fixed point at the origin. In
relative coordinates

∆x = x − x‡(t), ∆v = v − v‡(t), (15)

the equations of motion read

∆ẋ = ∆v,
∆v̇ = −γ∆v −U ′(∆x + x‡(t)) +U ′(x‡(t)). (16)

The relative equations of motion have a fixed point ∆Γ⋆ at
∆x = ∆v = 0, i.e., on the TS trajectory, and the surrounding
vector field itself will now oscillate with period T , the same
period as the driving. The TS trajectory has both a stable
and an unstable manifold attached. In relative coordinates, the
directions of these manifolds will depend on time.

IV. REACTION RATE THEORY

In the TST formalism, the rate of a chemical reaction is
given by the time-dependence of the conversion process from
reactant to product (R → P) where a DS in either configuration
space or phase space separates the reactive constituents.
The reaction rate can be obtained from the dynamics of
the normalized reactive population (PR → PP) either through
analytical propagation of the phase space density of initial
conditions or by treating large numbers of trajectories as
discrete sets, and integrating the equations of motion.

Consider a set of trajectories evolving through (2) that
all have initial positions x0 < x‡(0) on the reactant side of the
moving surface. The initial position distribution at time t = 0
is δ(x − x0) and the initial phase space density is

p0(x, v) = δ(x − x0) q(v), (17)

where q(v) is a Boltzmann distribution. The initial velocity
v0 of each trajectory is sampled from q(v), although at later
times due to dissipation and driving this distribution will

not be conserved. A fraction of this initial density contains
reactive trajectories. From the survival probability of PR, the
reaction rate can be expressed as the instantaneous flux-over-
population. The flux calculation is formally exact because the
DS attached to the TS trajectory is recrossing-free.

A. Harmonic barriers

When the barrier is harmonic (ϵ = 0), reactive trajectories
will cross the moving DS at a time60

t‡ =
1

λu − λs
ln

(
∆v0 − λu∆x0

∆v0 − λs∆x0

)
. (18)

The crossing time is a monotonically decreasing function of
the initial velocity∆v0: fast trajectories cross earlier. It diverges
as ∆v0 → λs∆x0 approaches the stable manifold, and it tends
to zero as ∆v0 → ∞.

At any time t > 0, the product region ∆x > 0, to the right
of the moving surface, will contain all those trajectories that
cross the surface at a time t‡ < t. These are the trajectories that
have an initial velocity of at least vmin = v‡(0) + ∆vmin, where
t‡(∆vmin) = t. From this condition, we obtain

∆vmin =
λue−λut − λse−λst

e−λut − e−λst
∆x0. (19)

The population of the product region at time t is therefore

PP(t) =
 ∞

vmin(t)
q(v) dv, (20)

and the flux across the moving surface is

FM(t) = dPP

dt

= −q(vmin(t)) dvmin

dt

= −q(vmin(t)) d∆vmin

dt

= −q(vmin(t))∆x0 (λu − λs)2 e(λu+λs)t

(eλut − eλst)2 . (21)

This result is positive because ∆x0 < 0.
Alternatively, the flux can be calculated directly from the

flux integral

FM(t) =
 ∞

0
d∆v ∆v pt(∆x = 0,∆v), (22)

where pt(∆x,∆v) is the density of trajectories in phase space
at time t. Initially, this density is

p0(∆x,∆v) = δ(∆x − ∆x0) q(v‡(0) + ∆v). (23)

At later times, it can be obtained from

pt(∆x,∆v) = eγt p0(∆x(−t),∆v(−t)). (24)

Here, ∆x(−t) and ∆v(−t) denote the phase space point reached
from ∆x,∆v by propagating backwards to −t, i.e., it is the
initial condition that has reached ∆x,∆v at time t. The
exponential prefactor accounts for the shrinkage of phase
space volume: The relative dynamics stretches distances at
a rate λu in the u direction and by a rate λs < 0 in the s
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FIG. 2. Phase space plots for a swarm of trajectories following the equations of motion (2) with various driving frequency sets and parameter values: Ω1 with
Ω f = 5 and ϵ = 1 for (a) σ = 0 (noiseless) and (b) σ = 0.025 (thermal) driving, Ω3 with Ω f = 4 and ϵ = 3 for (c) σ = 0 and (d) σ = 0.025. The initial position for
every trajectory, x0=−0.1, is shown as a vertical solid white line. Reactive trajectories are colored in cyan and nonreactive trajectories are colored in orange.
The TS trajectory Γ‡ is shown as a solid white curve. The critical velocity V ‡ is indicated by a circle at the intersection of the dashed horizontal line and the line
of initial conditions. The solid red curve is the critical curve V ‡c and the solid blue curve is the harmonic critical curve V ‡c |ϵ=0. Parameters for all panels are γ = 1
and ϕ = 0 in dimensionless units.

direction. Volumes therefore are “stretched” at a constant rate
λu + λs = −γ < 0, and densities must increase accordingly.

Because the relative dynamics is linear, the equations of
motion can be solved explicitly. The result is

∆x(−t)= ax ∆x + av ∆v,

∆v(−t)= bx ∆x + bv ∆v,

with

ax =
λu e−λst − λs e−λut

λu − λs
, av =

e−λut − e−λst

λu − λs
< 0,

bx = −
λuλs(e−λut − e−λst)

λu − λs
, bv =

λu e−λut − λs e−λst

λu − λs
.

We thus obtain the flux integral

FM(t) = eγt
 ∞

0
d∆v ∆v δ(av ∆v − x0) q(v‡(0) + bv ∆v)

= eγt
 ∞

0
d∆v ∆v

δ (∆v − x0/av)
|av | q(v‡(0) + bv ∆v)

=
eγt

−av

x0

av
q
�
v‡(0) + bv/av x0

�
, (25)

which can be shown to agree with Eq. (21).
In the limit t → ∞, the minimum velocity (19) is

approximately

∆vmin = λs∆x0 − (λu − λs)∆x0 e−(λu−λs)t + O
(
e−2(λu−λs)t) .

(26)

As expected, it tends to λs∆x0, which is the location of the
stable manifold. Therefore,

vmin(∞) = v‡(0) + λs∆x0 = V ‡. (27)

The critical velocity V ‡ is determined by the point of
intersection between the stable manifold and the line x = x0
of initial conditions.61,62 The identification of V ‡ allows the
separation of reactive (v0 > V ‡) and nonreactive trajectories
(v0 < V ‡) from initial conditions. The stable manifold at t = 0
can be calculated through extension of this point to all values of
x0 and defines a critical curve V ‡c . As illustrated in Figs. 2(a)
and 2(c), V ‡c is a time-invariant phase space object which
separates the reactive and nonreactive basins.

FIG. 3. The asymptotic product population PP(∞) of the harmonic potential
(ϵ = 0) as a function of driving frequency Ω for the Ω1 frequency set. The
curves are colored with respect to the value of the initial phase shift: ϕ = 0
(blue), ϕ = π/2 (cyan), and ϕ = π (red). For each value of ϕ, the dependency
of the asymptotic population on the friction parameter γ is shown by varying
the linestyle: γ = 0 (solid), γ = 1 (dashed), and γ = 2 (dotted).

The product population in the long-time limit is

PP(∞) =
 ∞

v‡(0)+λs ∆x0

q(v) dv. (28)

As shown in Fig. 3, the asymptotic population of the product
region depends strongly on the frequency of the barrier motion
Ω, the initial phase ϕ, and the friction γ. The asymptotic value
is approached according to

PP(t) = PP(∞) −
 vmin(t)

vmin(∞)
q(v) dv

= PP(∞) + q(vmin(∞)) (λu − λs)∆x0 e−(λu−λs)t

+O
(
e−2(λu−λs)t) . (29)

The rate of approach, i.e., the barrier crossing rate is

λu − λs =


γ2 + 4ω2

b. (30)

It depends only on the damping and the shape of the barrier,
but not on the details of the barrier motion or the distribution
of initial conditions (unless q(vmin(∞)) happens to vanish).
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B. Anharmonic barriers

Analogous to the harmonic case, for an anharmonic
barrier, we assume that there is an unstable PO with the period
of the driving. This is similar to the POs used by Lehmann
et al.63–65 for the case of thermal activation with additive
periodic driving. Note that this TS trajectory Γ‡ is an exact
solution to the equations of motion. As Γ‡ is an unstable PO, it
has stable and unstable manifolds attached. The manifolds are
uniquely defined and can be calculated perturbatively61,62 or
with a numerical scheme. The dependence of these manifolds
on ϵ and the corresponding phase space reaction dynamics
are shown in Figs. 2(a) and 2(c). With increasing anhar-
monicity, V ‡ also increases due to curvature in the stable
manifold. This results in a decrease in fraction of trajectories
that surmount the barrier leading to products.

The nonlinear equations of motion (16) cannot, in general,
be solved exactly. Let

Φ(Γ0, t0; t) = *
,

ϕx(Γ0, t0; t)
ϕv(Γ0, t0; t)

+
-

(31)

represent the phase space point that is reached at time t by a
trajectory that starts at Γ0 at time t0. Because of the external
driving, it depends on t and t0 separately not only on the
difference t − t0. The Jacobian matrix of this trajectory with
respect to the initial conditions is

J(Γ0, t0; t) =
*....
,

∂ϕx

∂x0

∂ϕx

∂v0

∂ϕv

∂x0

∂ϕv

∂v0

+////
-

. (32)

All derivatives on the right hand side of (32) are to be evaluated
at (Γ0, t0; t).

Reactive trajectories are those that have an initial velocity
vi > V ‡, for a critical velocity V ‡measured at x0. Each reactive
trajectory will cross the moving DS at a time tc(∆vi) and
with a velocity vc. If the crossing time decays monotonically
from tc(∆V ‡) = ∞ to tc(∞) = 0, the inverse function ∆vi(tc)
or vi(tc) = v‡(0) + δvi(tc) can be obtained. For any crossing
time tc > 0, there is a unique initial velocity vi that will lead
to a crossing at the given time.

The population of the product region ∆x > 0 at time t f is
therefore, as in Eq. (20),

PP(tc) =
 ∞

vi(tc)
q(v) dv, (33)

and the flux across the moving surface is

FM(tc) = dPP

dtc

= −q(vi(tc)) dvi
dtc

= −q(vi(tc)) d∆vi
dtc

. (34)

This result is positive because the initial velocity is a
decreasing function of the crossing time.

The flux can also be evaluated directly from the flux
integral (22)

FM(tc) =
 ∞

0
d∆v ∆v ptc(∆x = 0,∆v), (35)

where pt(∆x,∆v) is the density of trajectories in phase space
at time t. Initially, this density is (Eq. (23))

p0(∆x,∆v) = δ(∆x − ∆x0) q(v‡(0) + ∆v). (36)

At later times, it can be obtained from Eq. (24)

pt(∆x,∆v) = eγt p0(ϕx(∆x,∆v, t; 0), ϕv(∆x,∆v, t; 0)). (37)

Here, we have used the general notation for the flow of
the equation of motion. The exponential accounts for the
shrinkage of phase space volume and the corresponding
increase in density. It is the same as in the harmonic case:
In general, the flow of a differential equation u̇ = f (u) leads
to a stretching of volume whose rate is the divergence of the
vector field f . For Eq. (16), this rate is constant −γ, so that
over time t all volumes will shrink by a factor e−γt.

The flux integral formula (22) now reads

FM(tc) = eγtc
 ∞

0
d∆v ∆v δ(ϕx(0,∆v, tc; 0) − ∆x0)

× q(v‡(0) + ϕv(0,∆v, tc; 0)). (38)

The δ function requires that the trajectory that reaches ∆x
= 0,∆v at time tc must have started at∆x0 at time 0. It produces
a single contribution to the integral at velocity ∆vc(tc), so that

FM(tc) = eγtc q(v‡(0) + ∆vi(tc)) ∆vc(tc)����
∂ϕx
∂∆v0

���tc
����

, (39)

where ϕv(0,∆v, tc; 0) = ∆vi(tc) and the subscript tc indicates
that the derivative is to be evaluated at (0,∆vc(tc), tc; 0).
Similarly, a subscript 0 will be used to require evaluation
at (∆x0,∆vi(tc),0; tc). These subscripts indicate derivatives of
the flow taken along the trajectory from (∆x0,∆vi(tc)) at t = 0
forward in time to (0,∆vc(tc)) at t = tc (subscript 0) and along
the same trajectory backward in time (subscript tc).

To verify that the flux integral (39) gives the same result
as (34) that was obtained from the product population, it must
be shown that

− d∆vi
dtc
= eγtc

∆vc(tc)
����
∂ϕx
∂∆v0

���tc
����

. (40)

To this end, first note that ∆vi(tc) is defined by the condition

ϕx(∆x0,∆vi(tc),0; tc) = 0.

Differentiating this condition with respect to tc gives

∂ϕx

∂∆v

�����0
d∆vi
dtc
+

∂ϕx

∂t

�����0
= 0. (41)

Now ∂ϕx/∂t is the velocity of the trajectory at the end point.
The second term in Eq. (41) is therefore ∆vc(tc). With this
result, the condition (40) simplifies to

− ∂ϕx

∂∆v

�����tc
= eγtc

∂ϕx

∂∆v

�����0
. (42)

Under the given assumptions on the geometry, the derivative
on the left hand side is negative: A trajectory that arrives at the
DS with larger velocity must have started further away, i.e., at
smaller ∆x(0).
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The derivatives occurring in Eq. (42) are elements of the
Jacobian matrices

J|tc = J(0,∆vc(tc), tc; 0) =
*....
,

∂ϕx

∂x
����tc

∂ϕx

∂v

����tc
∂ϕv

∂x
����tc

∂ϕv

∂v

����tc

+////
-

and

J|0 = J(∆x0,∆vi(tc),0; tc) =
*...
,

∂ϕx

∂x
����0

∂ϕx

∂v

����0
∂ϕv

∂x
����0

∂ϕv

∂v

����0

+///
-

,

respectively. Because these matrices describe variations
around the same trajectory, taken forwards and backwards
in time, they are inverse to each other. Formally, this can be
shown by taking derivatives of the flow property

Φ(Φ(Γ0,0; tc), tc; 0) = Γ0 for all Γ0,

which says that propagating an arbitrary phase space point Γ0
forward in time by tc and back again will return the original
point.

By the well known formula for the inverse of a 2 × 2
matrix, it follows that

J|tc = (J|0)−1

=
1

det J|0
*...
,

∂ϕv

∂v

����0
−∂ϕx

∂v

����0
−∂ϕv

∂x
����0

∂ϕx

∂x
����0

+///
-

,

so that
∂ϕx

∂∆v

�����tc
= − 1

det J|0
∂ϕx

∂∆v

�����0
.

Now

det J|0 = e−γtc

is the factor by which phase space volumes shrink during time
tc. This proves the condition (42) and therefore the equality of
the two flux formulas.

C. Dynamics near the TS

The TS trajectory is a moving saddle point and thus
trajectories in the neighborhood of Γ‡ can be described by
a linearization of the equations of motion. In the phase space
vector relative coordinate ∆Γ = (∆x,∆v), this linearization is
given by

∆Γ̇ = J(t)∆Γ, (43)

where

J(t) = *
,

0 1
ω2

b + 3ϵ(x‡(t) − E(t))2 −γ
+
-

(44)

is the Jacobian of Eq. (16). The asymptotic decay rate of
PR(t) is determined by the behavior of trajectories with initial
conditions close to the stable manifold. For an ensemble
of trajectories constituting an initial phase space density p0,
trajectories that emanate close to V ‡c (the stable manifold at
t = 0) will persist in the neighborhood where (43) is valid

FIG. 4. Time dependence of the scaled logarithm of the reactant population,
−ln[PR(t)−PR(∞)], forΩ1 (top),Ω2 (middle), andΩ3 (bottom) with Ω f = 5
for all panels. Values of the anharmonic parameter are ϵ ∈ {1,2,4,6,8,10}.
The slope of each dashed line is the barrier crossing rate kf. The color of each
line corresponds to the respective ϵ value. In all panels, parameters are γ = 1
and ϕ = 0.

for long times. The decay of these trajectories determines the
reaction rate.

The stretching and compression of phase space about a
PO is known to dictate escape rates in conservative49–51 and
dissipative systems.48 When J(t) is periodic in systems of the
form of Eq. (43), the rate of deformation in the linearized
phase space can be quantified through calculation of the
Floquet exponents.66

To classify the stability of ∆Γ‡, we consider the dynamics
of a perturbation vector ∆σ(t). The equation of motion (43) is
linear in ∆σ(t) and thus it satisfies

∆σ̇ = J(t)∆σ, ∆σ(0) = I, (45)

where I is the 2 × 2 identity matrix. The principal funda-
mental matrix solution over one period of the driving is the
monodromy matrix

M = *
,

∆σ(1)(T) ∆σ(2)(T)
∆σ̇(1)(T) ∆σ̇(2)(T)

+
-
. (46)
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FIG. 5. The barrier crossing rates of systems following the equations of motion (2) as a function of the anharmonic parameter ϵ for various frequency sets
Ωs, driving frequencies Ω, and values of friction γ, as denoted in each panel. The circles denote the rates kf calculated from the time evolution of PR(t)
through numerical simulation and correspond to the dashed lines in Fig. 4. The solid curves are the rates predicted by the difference in the characteristic Floquet
exponents µu− µs of the corresponding TS trajectory.

A fundamental matrix solution ∆σ(t) of (43) at some later
time t + kT , for k = 1,2,3, . . ., can be obtained as

∆σ(t + kT) = Mk
∆σ(t), (47)

through repeated operation by the monodromy matrix.
The eigenvalues ms,u of M are the Floquet multipliers.

The Floquet exponents

µs,u =
1
T

ln |ms,u | (48)

quantify the stability of ∆Γ‡ and give the rate of expansion
or contraction of the perturbation of per unit time.67–69 The
TS trajectory has both an unstable µu > 0 and a stable µs < 0
exponent which correspond to stretching and contraction of
the initial perturbation in the directions of the unstable and
stable manifolds, respectively.

For an arbitrary time interval of length T , trajectories
that cross the DS in this interval form a strip in the phase
plane. Trajectories that cross the DS in the next following
time interval T form a similar strip that is closer to the stable
manifold. In the region where the linearized system is valid,
the phase space density is constant. The flux of trajectories

through the DS in a given time interval is proportional to
the width of the strip that contains these trajectories. During
sequential periods, this width decreases by a factor e−(µu−µs)t.
From this it follows that, up to periodic modulation, the flux
must decay as e−(µu−µs)t and the barrier crossing rate is

kf = µu − µs, (49)

which expresses the reaction rate in terms of the character-
istic Floquet exponents of the TS trajectory. Equation (49)
generalizes Eq. (30) for the case of an anharmonic barrier.

V. NUMERICAL RESULTS AND COMPARISON
WITH THEORY

The reaction rate of (2) was calculated by simulating
ensembles of n = 108–109 trajectories for various sets of
parameters {Ω, γ, ϵ,σ} and following the survival probability
of PR as a function of time. A Runge-Kutta-Maruyama
scheme70 was implemented to perform the integration. In
the absence of noise (σ = 0), this algorithm is the well-
known fourth-order Runge-Kutta method. For all numerical
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FIG. 6. The percentage of trajectories that recross the moving dividing surface attached to the DTS trajectory as a function of noise strength σ with (a) γ = 0.01,
(b) γ = 0.1, (c) γ = 1, and (d) γ = 3 for single-frequency (Ω1) driving and various values of ϵ and Ω. The black vertical line (solid) marks the noise strength when
the fluctuation-dissipation theorem is obeyed.

simulations, non-dimensional parameters were used by choos-
ing units such that the barrier frequency ωb and driving
amplitude are unity. Each trajectory was given an initial
position x0 = −0.1 (in the reactant region) and v0 was sampled
from a Boltzmann distribution with kBT = 1. The choice of
initial conditions is arbitrary as the asymptotic decay rate of
PR(t) is independent of the choice of initial distribution, suffice
that there is enough density about the stable manifold such that
a rate exists.48

The ensemble of n trajectories was evolved through the
equations of motion (2). The normalized reactant population
was calculated at each time step in the integration scheme. An
indicator function was employed to follow the state evolution
of each trajectory,

hR[x(t)] =



0, x(t) > x‡(t),
1, x(t) < x‡(t), (50)

where x‡(t) is the configuration space projection of the TS
trajectory. If for a specific trajectory i, xi(t) > x‡(t) that
trajectory is in the product state and is not counted in the
reactant population at time t. The instantaneous normalized
population of the reactant region can be found by summing
over all n trajectories and then normalizing by a factor 1/n,

PR(t) = 1
n

n
i=1

hR[xi(t)]. (51)

Trajectories can only exist in one of two states, reactant
or product, and so the normalized product population PP
= 1 − PR.

As shown in Fig. 4, the scaled logarithm of the normalized
reactant population, −ln [PR(t) − PR(∞)], is approximately
linear in time after an initial transient section implying a

first-order rate process. The asymptotic reaction rate kf can
thus be found as the slope of the scaled logarithmic curve
in the long-time limit. Periodic modulation in the decay of
PR(t) was found to become more prominent for low frequency
driving (Ω f / 2). In these cases, the global exponential rate
was calculated as an average over these modulations.

A comparison between the rates calculated from numer-
ical simulation and rates predicted by Eq. (49) is shown
in Fig. 5. For all frequency sets Ωs and parameter values,
agreement is observed. Underdamped (γ < 2), overdamped
(γ > 2), and critically damped (γ = 2) regimes of a corre-
sponding harmonic well were considered. Agreement between
the rates persists over all ranges of damping. For high
frequency driving (Ω f > ωb), the exponential rate can be
averaged over several periods of driving and modulations
in the decay are minimal, as illustrated in Fig. 4. Periodic
modulations in the decay of PR(t) are prominent for low
driving frequencies (Ω f ≈ ωb) and the integration of n = 108

trajectories resulted in reaching the numerical asymptote
PR(∞) at times less than the period of the external driving.
In those cases for which the integration time was insufficient
to sample the asymptotic region, a larger number of trajectories
(n = 109) were integrated. Each trajectory was integrated to a
final time of at least tf = 15 and, as shown in Fig. 4, PR(∞)
is reached well before the end of this sampling window.
Increasing the number of trajectories by an order of magnitude
resulted in improved convergence of the scaled logarithmic
population and marginally better agreement between the
compared methodologies, as shown in Fig. 5(e) forΩ = 1. The
agreement between the two methods is illustrated in Fig. 5(d)
for the smaller, non-unity, driving amplitude case of Ω2. The
decreased driving amplitude leads to a decrease in the reaction
rate.
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FIG. 7. Time dependence of the scaled logarithm of the reactant population
for systems with single-frequency (Ω1) periodic and thermal driving for
γ = 0.01 (top), γ = 0.1 (middle), and γ = 1 (bottom). The color of each line
corresponds to a specific σ value. The decay for systems with various anhar-
monicities ϵ ∈ {1,3,10} is shown and denoted in each panel. The fundamental
driving frequency is Ω f = 5 for all panels. For visual clarity, each curve is
truncated at a point where the data became noisy.

VI. CHARACTERIZING NOISY REACTIONS
WITH THE NOISE-FREE GEOMETRY

In systems in which the strength of an external driving
force dominates over that of the thermal driving, statistical
quantities can be approximated by those of a corresponding
purely deterministically driven system. For thermally induced
reactions, Lehmann, Reimann, and Hänggi63–65 have shown
that in the overdamped (large-γ) regime, when a chemical
reaction is forced by a periodic field the reaction rate is
determined in part by the geometry of periodic trajectories
in the purely deterministic phase space. This work was later
extended to cases with different scaling behaviors between the
strength of thermal activation and the strength of the external
field.71–73

Our goal here is to develop a minimalist theory, applicable
at the limit where the magnitude

√
2σ of a noise sequence

ξα(t) is a small enough perturbation to the periodic driving
E(t) that the TS trajectory of the noiseless system (the periodic

orbit) gives rise to a DS with minimal recrossings. This
deterministic TS trajectory (DTS trajectory) does not solve
the equations of motion (2) with a non-zero value of σ. We
therefore distinguish the DTS trajectory from the true TS
trajectory of the noisy system (that we do not compute in
this work).

A principal assumption for the use of the noise-free
geometry is that the phase space density of the thermal
system, and its time-dependence, is approximately that of
the deterministic system, i.e., pt(∆xα,∆vα) ≈ pt(∆x,∆v). As
shown in Fig. 2, for small values of σ, the geometry of
the thermal system is similar to that of its deterministic
counterpart. The rate theory developed in Sec. IV C for
the deterministic system can therefore be applied. This is
advantageous in applications such as in comparisons with
experiments in which the exact noise sequence is not known.

Thermal systems in which the fluctuation-dissipation the-
orem (FDR) is not obeyed due to energy dissipation constitute
non-equilibrium processes. Formal treatments of fluctuation-
response in periodically forced systems by Teramoto, Harada,
and Sasa74,75 provide insight into the rate of energy dissipation
in such systems. Green et al.76 have shown that the rate
of energy dissipation is directly related to the dynamical
entropy of the system. To realize non-equilibrium conditions
in the present model reaction, the damping constant γ is held
constant and the strength of the thermal fluctuations σ is
increased up to the point where the FDR is satisfied. If the
initial velocities are drawn from a Boltzmann ensemble with
kBT = 1 (in dimensionless units), this is the case at σ = γ.
If σ < γ, the thermal bath is at a lower temperature than
that of the distribution of initial velocities. In this case, the
temperature of the ensemble of reactants will be continuously
cooled by the thermal bath. Interestingly, although the flux
over population rate is well defined numerically, as exhibited
in Fig. 7, the ensemble in the reactant region does not satisfy
the equilibrium distribution. This requires a reconsideration of
TST in the context of nonequilibrium processes as below.

The percentage of thermal trajectories that recross the
DS attached to the DTS trajectory is shown in Fig. 6 for
varying noise strengths σ and constant dissipation rates. As
shown in Figs. 6(a) and 6(b), a minimal number of recrossings
occur below and up to the FDR threshold for small values of
γ. For the γ = 1 case, shown in Fig. 6(c), trajectories persist
around the BT for long times, leading to a larger number of
recrossings than observed for smaller dissipation rates. For the
overdamped dynamics (γ = 3), shown in Fig. 6(d), the deter-
ministic DS identifies reactive trajectories adequately only
for weak thermal driving (small σ) and strong anharmonic-
ity. As the harmonic limit is approached or in equilibrium
systems the superimposed DS becomes very poor.

The decay of the scaled logarithm of the normalized
reactant population, as calculated with the superimposed
deterministic DS, is shown in Fig. 7 for various parameter
values. Over all friction regimes, the population decay of the
systems with additional thermal driving follows that of its
deterministic counterpart if the noise strength σ is sufficiently
low. For γ = 1, when the strength of the thermal driving
approaches that of the FDR, a decrease in the reaction rate
is observed. The data presented in Fig. 7 become highly
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FIG. 8. The barrier crossing rates of systems following the equations of motion (2) as a function noise strength σ. The rates calculated using the DS attached
to the DTS trajectory for single-frequency (Ω1) driving and various values of ϵ, γ, and Ω are shown as circles. The horizontal lines (solid) denote the rates given
by the Floquet exponents of the corresponding DTS trajectory and are colored according to a respective ϵ value. The black vertical lines (solid) denote the noise
strength where the fluctuation-dissipation theorem is obeyed.

oscillatory at long times due to recrossings of the DS. For
visual clarity, each data series has been truncated to remove
this noisy tail. As observed in Figs. 4 and 7, for short times
(t / 0.3), the decay of PR is non-exponential, signifying
temporally global non-RRKM kinetic behavior. (Note that
RRKM refers to Rice–Ramsperger–Kassel–Marcus theory.)
We obtain the rate from the long-time asymptotic decay of PR,
which is representative of kinetic experiments in which the
concentration of a reactant species is directly measured over
time.77

The thermal rates calculated using the DTS trajectory
are shown in Fig. 8. As expected by the minimal number
of recrossings shown in Fig. 6, stability analysis of the DTS
can produce an excellent approximation to the rate in thermal
environments. Through calculation of the error between the
numerically calculated rate with included noise and the rate
given by the Floquet exponents of the DTS trajectory, the
extent of applicability of the noise-free geometry can be
quantified. This error is <3% at γ = 0.01 over all parameter
values. It is <1% for ϵ ∈ {5,10}. Increasing the dissipation by
an order of magnitude (γ = 0.1) results in the same general
trends, with all errors generally less than 5%. The exceptions

occur at the noise strength where the FDR is obeyed (σ = 0.1)
at ϵ ∈ {1,3} andΩ = 5 for which the error≈ 20%. For γ = 1.0
and Ω = 10, all calculated errors are less than or on the order
of 20%, increasing monotonically as a function of σ. As
illustrated in Fig. 8(e), at lower-frequency driving (Ω = 5)
and large noise (σ = 1), the error is between 30%–50%.
This suggests a practical upper bound to the applicability of
the noise-free geometry in estimating the reaction rates in
the presence of noise. Although not shown, for overdamped
dynamics, stability analysis of the DTS gives an accurate
approximation to the rate only in non-equilibrium small noise
regimes.

The calculated errors are on the order of the error
expected from application of variational transition state
theory (VTST).5 The presented methodology is advantageous
over VTST as it does not require the integration of large
numbers of trajectories or a flux minimization procedure.
Thus, stability analysis of the DTS trajectory offers a simple
rate calculation methodology that can be readily applied, in
weak thermal environments, to driven chemical reactions with
only prerequisite knowledge of the geometry of the energy
surface and the functional shape of the driving waveform.
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VII. CONCLUSIONS

We have shown that in a model chemical reaction
subjected to the influence of forcing from a temporally
periodic external field, a recrossing-free dividing surface
can be constructed over an unstable periodic orbit in the
region of a moving energetic barrier top. This forms the
basis for future work on specific driven chemical reactions
that can be represented by a single collective variable for
the reaction coordinate under nonequilibrium conditions.
Potential targets include both substitution and isomerization
reactions in which the governing multi-dimensional energy
surface can be parameterized by a single collective degree
of freedom. Other possible targets include mechanochemical
reactions and stimuli-responsive assembly mechanisms when
the reaction rate is dictated predominantly by geometric
properties about the moving dividing surface. Generally,
force-modified and temperature-modulated energy surfaces,
deforming under the influence of temporally varying forces,
motivate the development of rate methodologies that go
beyond the simplistic equilibrium arguments intrinsic to
classical equilibrium transition state theory.

The no-recrossing surface constructed here has been
shown to persist for strongly anharmonic barriers subjected to
single-mode and multi-mode driving waveforms. A formally
exact rate theory has been developed based on the flux of
reactive trajectories through this recrossing-free surface. It
rectifies the principal criterion of transition state theory for
periodically driven chemical reactions.

To circumvent computationally taxing numerical calcula-
tions of the reactive flux through this surface, a rate theory has
been developed based on the stability of the dividing surface.
Strong agreement was observed between the rate predicted
by the Floquet exponents of a trajectory defining the phase
space evolution on the dividing surface, and the rate calculated
from simulation of a large ensemble of trajectories. Thus, in
a periodically driven chemical reaction, the asymptotic decay
rate of an initial distribution of reactants can be extracted
directly from the stability of the time-varying dividing surface
irrespective of the dynamics of the reactive population.

Use of the noise-free geometry to approximate the
corresponding structure of a driven thermal system has been
shown to give an excellent approximation to the optimal
dividing surface if the magnitude of the oscillating force
is large compared with that from the thermal environment.
For thermally activated processes, the stability exponents of
the purely periodically driven system can thus be used to
predict the reaction rates without an explicit treatment of
the thermal dynamics. Extensions of this work to include
an explicit treatment of the noise, systems with structured
solvents environments,78,79 and systems displaying fluctuating
rates,80 are possible next steps, and ones which we are
currently pursuing.
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