2,048 research outputs found

    Remote measurement utilizing NASA's scanning laser Doppler systems. Volume 2: Laser Doppler dust devil velocity profile measurement program

    Get PDF
    The first detailed velocity profile data on thermally induced dust vortices are presented. These dust devils will be analyzed and studied to determine their flow fields and origin in an effort to correlate this phenomena with the generation and characteristics of tornadoes. A continuing effort to increase mankind's knowledge of vortex and other meteorological phenomena will hopefully allow the prediction of tornado occurrence, their path, and perhaps eventually even lead to some technique for their destruction

    Remote measurement utilizing NASA's scanning laser Doppler systems. Volume 1. Laser Doppler wake vortex tracking at Kennedy Airport

    Get PDF
    Test operations of the Scanning Laser Doppler System (SLDS) at Kennedy International Airport (KIA) during August 1974 through June 1975 are reported. A total of 1,619 data runs was recorded with a totally operational system during normal landing operations at KIA. In addition, 53 data runs were made during cooperative flybys with the C880 for a grand total of 1672 recorded vortex tracks. Test crews were in attendance at KIA for 31 weeks, of which 25 weeks were considered operational and the other six were packing, unpacking, setup and check out. Although average activity equates to 67 recorded landing operations per week, two periods of complete runway inactivity spanned 20 days and 13 days, respectively. The operation frequency therefore averaged about 88 operations per week

    Multibody aircraft study, volume 2

    Get PDF
    The potential benefits of a multibody aircraft when compared to a single body aircraft are presented. The analyses consist principally of a detailed point design analysis of three multibody and one single body aircraft, based on a selected payload of 350,000 kg (771,618 lb), for final aircraft definitions; sensitivity studies to evaluate the effects of variations in payload, wing semispan body locations, and fuel price; recommendations as to the research and technology requirements needed to validate the multibody concept. Two, two body, one, three body, and one single body aircraft were finalized for the selected payload, with DOC being the prime figure of merit. When compared to the single body, the multibody aircraft showed a reduction in DOC by as much as 11.3 percent. Operating weight was reduced up to 14 percent, and fly away cost reductions ranged from 8.6 to 13.4 percent. Weight reduction, hence cost, of the multibody aircraft resulted primarily from the wing bending relief afforded by the bodies being located outboard on the wing

    Branching of the Falkner-Skan solutions for λ < 0

    Get PDF
    The Falkner-Skan equation f'" + ff" + λ(1 - f'^2) = 0, f(0) = f'(0) = 0, is discussed for λ < 0. Two types of problems, one with f'(∞) = 1 and another with f'(∞) = -1, are considered. For λ = 0- a close relation between these two types is found. For λ < -1 both types of problem allow multiple solutions which may be distinguished by an integer N denoting the number of zeros of f' - 1. The numerical results indicate that the solution branches with f'(∞) = 1 and those with f'(∞) = -1 tend towards a common limit curve as N increases indefinitely. Finally a periodic solution, existing for λ < -1, is presented.

    Evolution of interdisciplinarity in biodiversity science

    No full text
    The study of biodiversity has grown exponentially in the last thirty years in response to demands for greater understanding of the function and importance of Earth's biodiversity and finding solutions to conserve it. Here, we test the hypothesis that biodiversity science has become more interdisciplinary over time. To do so, we analyze 97,945 peer‐reviewed articles over a twenty‐two‐year time period (1990–2012) with a continuous time dynamic model, which classifies articles into concepts (i.e., topics and ideas) based on word co‐occurrences. Using the model output, we then quantify different aspects of interdisciplinarity: concept diversity, that is, the diversity of topics and ideas across subdisciplines in biodiversity science, subdiscipline diversity, that is, the diversity of subdisciplines across concepts, and network structure, which captures interactions between concepts and subdisciplines. We found that, on average, concept and subdiscipline diversity in biodiversity science were either stable or declining, patterns which were driven by the persistence of rare concepts and subdisciplines and a decline in the diversity of common concepts and subdisciplines, respectively. Moreover, our results provide evidence that conceptual homogenization, that is, decreases in temporal β concept diversity, underlies the observed trends in interdisciplinarity. Together, our results reveal that biodiversity science is undergoing a dynamic phase as a scientific discipline that is consolidating around a core set of concepts. Our results suggest that progress toward addressing the biodiversity crisis via greater interdisciplinarity during the study period may have been slowed by extrinsic factors, such as the failure to invest in research spanning across concepts and disciplines. However, recent initiatives such as the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services (IPBES) may attract broader support for biodiversity‐related issues and hence interdisciplinary approaches to address scientific, political, and societal challenges in the coming years

    Multiple Phosphorylation of Rhodopsin and the In Vivo Chemistry Underlying Rod Photoreceptor Dark Adaptation

    Get PDF
    AbstractDark adaptation requires timely deactivation of phototransduction and efficient regeneration of visual pigment. No previous study has directly compared the kinetics of dark adaptation with rates of the various chemical reactions that influence it. To accomplish this, we developed a novel rapid-quench/mass spectrometry-based method to establish the initial kinetics and site specificity of light-stimulated rhodopsin phosphorylation in mouse retinas. We also measured phosphorylation and dephosphorylation, regeneration of rhodopsin, and reduction of all-trans retinal all under identical in vivo conditions. Dark adaptation was monitored by electroretinography. We found that rhodopsin is multiply phosphorylated and then dephosphorylated in an ordered fashion following exposure to light. Initially during dark adaptation, transduction activity wanes as multiple phosphates accumulate. Thereafter, full recovery of photosensitivity coincides with regeneration and dephosphorylation of rhodopsin

    Material condition assessment with eddy current sensors

    Get PDF
    Eddy current sensors and sensor arrays are used for process quality and material condition assessment of conducting materials. In an embodiment, changes in spatially registered high resolution images taken before and after cold work processing reflect the quality of the process, such as intensity and coverage. These images also permit the suppression or removal of local outlier variations. Anisotropy in a material property, such as magnetic permeability or electrical conductivity, can be intentionally introduced and used to assess material condition resulting from an operation, such as a cold work or heat treatment. The anisotropy is determined by sensors that provide directional property measurements. The sensor directionality arises from constructs that use a linear conducting drive segment to impose the magnetic field in a test material. Maintaining the orientation of this drive segment, and associated sense elements, relative to a material edge provides enhanced sensitivity for crack detection at edges
    corecore