460 research outputs found

    Automated PGP9.5 immunofluorescence staining: a valuable tool in the assessment of small fiber neuropathy?

    No full text
    BACKGROUND: In this study we explored the possibility of automating the PGP9.5 immunofluorescence staining assay for the diagnosis of small fiber neuropathy using skin punch biopsies. The laboratory developed test (LDT) was subjected to a validation strategy as required by good laboratory practice guidelines and compared to the well-established gold standard method approved by the European Federation of Neurological Societies (EFNS). To facilitate automation, the use of thinner sections. (16 µm) was evaluated. Biopsies from previously published studies were used. The aim was to evaluate the diagnostic performance of the LDT compared to the gold standard. We focused on technical aspects to reach high-quality standardization of the PGP9.5 assay and finally evaluate its potential for use in large scale batch testing. RESULTS: We first studied linear nerve fiber densities in skin of healthy volunteers to establish reference ranges, and compared our LDT using the modifications to the EFNS counting rule to the gold standard in visualizing and quantifying the epidermal nerve fiber network. As the LDT requires the use of 16 µm tissue sections, a higher incidence of intra-epidermal nerve fiber fragments and a lower incidence of secondary branches were detected. Nevertheless, the LDT showed excellent concordance with the gold standard method. Next, the diagnostic performance and yield of the LDT were explored and challenged to the gold standard using skin punch biopsies of capsaicin treated subjects, and patients with diabetic polyneuropathy. The LDT reached good agreement with the gold standard in identifying small fiber neuropathy. The reduction of section thickness from 50 to 16 µm resulted in a significantly lower visualization of the three-dimensional epidermal nerve fiber network, as expected. However, the diagnostic performance of the LDT was adequate as characterized by a sensitivity and specificity of 80 and 64 %, respectively. CONCLUSIONS: This study, designed as a proof of principle, indicated that the LDT is an accurate, robust and automated assay, which adequately and reliably identifies patients presenting with small fiber neuropathy, and therefore has potential for use in large scale clinical studies

    MTORC1 signaling and regulation of pancreatic β-cell mass

    Get PDF
    The capacity of β cells to expand in response to insulin resistance is a critical factor in the development of type 2 diabetes. Proliferation of β cells is a major component for these adaptive responses in animal models. The extracellular signals responsible for β-cell expansion include growth factors, such as insulin, and nutrients, such as glucose and amino acids. AKT activation is one of the important components linking growth signals to the regulation of β-cell expansion. Downstream of AKT, tuberous sclerosis complex 1 and 2 (TSC1/2) and mechanistic target of rapamycin complex 1 (mTORC1) signaling have emerged as prime candidates in this process, because they integrate signals from growth factors and nutrients. Recent studies demonstrate the importance of mTORC1 signaling in β cells. This review will discuss recent advances in the understanding of how this pathway regulates β-cell mass and present data on the role of TSC1 in modulation of β-cell mass. Herein, we also demonstrate that deletion of Tsc1 in pancreatic β cells results in improved glucose tolerance, hyperinsulinemia and expansion of β-cell mass that persists with aging

    Presenile Alzheimer dementia characterized by amyloid angiopathy and large amyloid core type senile plaques in the APP 692 Ala => Gly mutation

    Get PDF
    Mutations at codons 717 and 670/671 in the amyloid precursor protein (APP) are rare genetic causes of familial Alzheimer's disease (AD). A mutation at codon 693 of APP has also been described as the genetic defect in hereditary cerebral hemorrhage with amyloidosis of the Dutch type (HCHWA-D). We have reported a APP692Ala-->Gly (Flemish) mutation as a cause of intracerebral hemorrhage and presenile dementia diagnosed as probable AD in a Dutch family. We now describe the post-mortem examination of two demented patients with the APP692 mutation. The neuropathological findings support the diagnosis of AD. Leptomeningial and parenchymal vessels showed extensive deposition of A
    corecore