242 research outputs found

    The subunit composition of human extracellular superoxide dismutase (EC-SOD) regulate enzymatic activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human extracellular superoxide dismutase (EC-SOD) is a tetrameric metalloenzyme responsible for the removal of superoxide anions from the extracellular space. We have previously shown that the EC-SOD subunit exists in two distinct folding variants based on differences in the disulfide bridge pattern (Petersen SV, Oury TD, Valnickova Z, Thøgersen IB, Højrup P, Crapo JD, Enghild JJ. Proc Natl Acad Sci USA. 2003;100(24):13875–80). One variant is enzymatically active (aEC-SOD) while the other is inactive (iEC-SOD). The EC-SOD subunits are associated into covalently linked dimers through an inter-subunit disulfide bridge creating the theoretical possibility of 3 dimers (<it>aa</it>, <it>ai </it>or <it>ii</it>) with different antioxidant potentials. We have analyzed the quaternary structure of the endogenous EC-SOD disulfide-linked dimer to investigate if these dimers in fact exist.</p> <p>Results</p> <p>The analyses of EC-SOD purified from human tissue show that all three dimer combinations exist including two homo-dimers (<it>aa </it>and <it>ii</it>) and a hetero-dimer (<it>ai</it>). Because EC-SOD is a tetramer the dimers may combine to generate 5 different mature EC-SOD molecules where the specific activity of each molecule is determined by the ratio of aEC-SOD and iEC-SOD subunits.</p> <p>Conclusion</p> <p>This finding shows that the aEC-SOD and iEC-SOD subunits combine in all 3 possible ways supporting the presence of tetrameric enzymes with variable enzymatic activity. This variation in enzymatic potency may regulate the antioxidant level in the extracellular space and represent a novel way of modulating enzymatic activity.</p

    Epidemiology, genetics, and subtyping of preserved ratio impaired spirometry (PRISm) in COPDGene.

    Get PDF
    BackgroundPreserved Ratio Impaired Spirometry (PRISm), defined as a reduced FEV1 in the setting of a preserved FEV1/FVC ratio, is highly prevalent and is associated with increased respiratory symptoms, systemic inflammation, and mortality. Studies investigating quantitative chest tomographic features, genetic associations, and subtypes in PRISm subjects have not been reported.MethodsData from current and former smokers enrolled in COPDGene (n = 10,192), an observational, cross-sectional study which recruited subjects aged 45-80 with ≥10 pack years of smoking, were analyzed. To identify epidemiological and radiographic predictors of PRISm, we performed univariate and multivariate analyses comparing PRISm subjects both to control subjects with normal spirometry and to subjects with COPD. To investigate common genetic predictors of PRISm, we performed a genome-wide association study (GWAS). To explore potential subgroups within PRISm, we performed unsupervised k-means clustering.ResultsThe prevalence of PRISm in COPDGene is 12.3%. Increased dyspnea, reduced 6-minute walk distance, increased percent emphysema and decreased total lung capacity, as well as increased segmental bronchial wall area percentage were significant predictors (p-value &lt;0.05) of PRISm status when compared to control subjects in multivariate models. Although no common genetic variants were identified on GWAS testing, a significant association with Klinefelter's syndrome (47XXY) was observed (p-value &lt; 0.001). Subgroups identified through k-means clustering include a putative "COPD-subtype", "Restrictive-subtype", and a highly symptomatic "Metabolic-subtype".ConclusionsPRISm subjects are clinically and genetically heterogeneous. Future investigations into the pathophysiological mechanisms behind and potential treatment options for subgroups within PRISm are warranted.Trial registrationClinicaltrials.gov Identifier: NCT000608764

    Paired inspiratory-expiratory chest CT scans to assess for small airways disease in COPD

    Full text link
    Abstract Background Gas trapping quantified on chest CT scans has been proposed as a surrogate for small airway disease in COPD. We sought to determine if measurements using paired inspiratory and expiratory CT scans may be better able to separate gas trapping due to emphysema from gas trapping due to small airway disease. Methods Smokers with and without COPD from the COPDGene Study underwent inspiratory and expiratory chest CT scans. Emphysema was quantified by the percent of lung with attenuation < −950HU on inspiratory CT. Four gas trapping measures were defined: (1) Exp−856, the percent of lung < −856HU on expiratory imaging; (2) E/I MLA, the ratio of expiratory to inspiratory mean lung attenuation; (3) RVC856-950, the difference between expiratory and inspiratory lung volumes with attenuation between −856 and −950 HU; and (4) Residuals from the regression of Exp−856 on percent emphysema. Results In 8517 subjects with complete data, Exp−856 was highly correlated with emphysema. The measures based on paired inspiratory and expiratory CT scans were less strongly correlated with emphysema. Exp−856, E/I MLA and RVC856-950 were predictive of spirometry, exercise capacity and quality of life in all subjects and in subjects without emphysema. In subjects with severe emphysema, E/I MLA and RVC856-950 showed the highest correlations with clinical variables. Conclusions Quantitative measures based on paired inspiratory and expiratory chest CT scans can be used as markers of small airway disease in smokers with and without COPD, but this will require that future studies acquire both inspiratory and expiratory CT scans.http://deepblue.lib.umich.edu/bitstream/2027.42/134586/1/12931_2012_Article_1346.pd

    Paired inspiratory-expiratory chest CT scans to assess for small airways disease in COPD

    Get PDF
    Background: Gas trapping quantified on chest CT scans has been proposed as a surrogate for small airway disease in COPD. We sought to determine if measurements using paired inspiratory and expiratory CT scans may be better able to separate gas trapping due to emphysema from gas trapping due to small airway disease. Methods: Smokers with and without COPD from the COPDGene Study underwent inspiratory and expiratory chest CT scans. Emphysema was quantified by the percent of lung with attenuation < −950HU on inspiratory CT. Four gas trapping measures were defined: (1) Exp−856, the percent of lung < −856HU on expiratory imaging; (2) E/I MLA, the ratio of expiratory to inspiratory mean lung attenuation; (3) RVC856-950, the difference between expiratory and inspiratory lung volumes with attenuation between −856 and −950 HU; and (4) Residuals from the regression of Exp−856 on percent emphysema. Results: In 8517 subjects with complete data, Exp−856 was highly correlated with emphysema. The measures based on paired inspiratory and expiratory CT scans were less strongly correlated with emphysema. Exp−856, E/I MLA and RVC856-950 were predictive of spirometry, exercise capacity and quality of life in all subjects and in subjects without emphysema. In subjects with severe emphysema, E/I MLA and RVC856-950 showed the highest correlations with clinical variables. Conclusions: Quantitative measures based on paired inspiratory and expiratory chest CT scans can be used as markers of small airway disease in smokers with and without COPD, but this will require that future studies acquire both inspiratory and expiratory CT scans

    Impact of self-reported Gastroesophageal reflux disease in subjects from COPDGene cohort

    Full text link
    Abstract Background The coexistence of gastroesophageal reflux disease (GERD) and COPD has been recognized, but there has been no comprehensive evaluation of the impact of GERD on COPD-related health status and patient-centered outcomes. Methods Cross-sectional and longitudinal study of 4,483 participants in the COPDGene cohort who met GOLD criteria for COPD. Physician-diagnosed GERD was ascertained by questionnaire. Clinical features, spirometry and imaging were compared between COPD subjects without versus with GERD. We evaluated the relationship between GERD and symptoms, exacerbations and markers of microaspiration in univariate and multivariate models. Associations were additionally tested for the confounding effect of covariates associated with a diagnosis of GERD and the use of proton-pump inhibitor medications (PPIs). To determine whether GERD is simply a marker for the presence of other conditions independently associated with worse COPD outcomes, we also tested models incorporating a GERD propensity score. Results GERD was reported by 29% of subjects with female predominance. Subjects with GERD were more likely to have chronic bronchitis symptoms, higher prevalence of prior cardiovascular events (combined myocardial infarction, coronary artery disease and stroke 21.3% vs. 13.4.0%, p < 0.0001). Subjects with GERD also had more severe dyspnea (MMRC score 2.2 vs. 1.8, p < 0.0001), and poorer quality of life (QOL) scores (St. George’s Respiratory Questionnaire (SGRQ) total score 41.8 vs. 34.9, p < 0.0001; SF36 Physical Component Score 38.2 vs. 41.4, p < 0.0001). In multivariate models, a significant relationship was detected between GERD and SGRQ (3.4 points difference, p < 0.001) and frequent exacerbations at baseline (≥2 exacerbation per annum at inclusion OR 1.40, p = 0.006). During a mean follow-up time of two years, GERD was also associated with frequent (≥2/year exacerbations OR 1.40, p = 0.006), even in models in which PPIs, GERD-PPI interactions and a GERD propensity score were included. PPI use was associated with frequent exacerbator phenotype, but did not meaningfully influence the GERD-exacerbation association. Conclusions In COPD the presence of physician-diagnosed GERD is associated with increased symptoms, poorer QOL and increased frequency of exacerbations at baseline and during follow-up. These associations are maintained after controlling for PPI use. The PPI-exacerbations association could result from confounding-by-indication.http://deepblue.lib.umich.edu/bitstream/2027.42/134572/1/12931_2014_Article_1500.pd

    Impact of self-reported Gastroesophageal reflux disease in subjects from COPDGene cohort

    Get PDF
    Abstract Background The coexistence of gastroesophageal reflux disease (GERD) and COPD has been recognized, but there has been no comprehensive evaluation of the impact of GERD on COPD-related health status and patient-centered outcomes. Methods Cross-sectional and longitudinal study of 4,483 participants in the COPDGene cohort who met GOLD criteria for COPD. Physician-diagnosed GERD was ascertained by questionnaire. Clinical features, spirometry and imaging were compared between COPD subjects without versus with GERD. We evaluated the relationship between GERD and symptoms, exacerbations and markers of microaspiration in univariate and multivariate models. Associations were additionally tested for the confounding effect of covariates associated with a diagnosis of GERD and the use of proton-pump inhibitor medications (PPIs). To determine whether GERD is simply a marker for the presence of other conditions independently associated with worse COPD outcomes, we also tested models incorporating a GERD propensity score. Results GERD was reported by 29% of subjects with female predominance. Subjects with GERD were more likely to have chronic bronchitis symptoms, higher prevalence of prior cardiovascular events (combined myocardial infarction, coronary artery disease and stroke 21.3% vs. 13.4.0%, p < 0.0001). Subjects with GERD also had more severe dyspnea (MMRC score 2.2 vs. 1.8, p < 0.0001), and poorer quality of life (QOL) scores (St. George’s Respiratory Questionnaire (SGRQ) total score 41.8 vs. 34.9, p < 0.0001; SF36 Physical Component Score 38.2 vs. 41.4, p < 0.0001). In multivariate models, a significant relationship was detected between GERD and SGRQ (3.4 points difference, p < 0.001) and frequent exacerbations at baseline (≥2 exacerbation per annum at inclusion OR 1.40, p = 0.006). During a mean follow-up time of two years, GERD was also associated with frequent (≥2/year exacerbations OR 1.40, p = 0.006), even in models in which PPIs, GERD-PPI interactions and a GERD propensity score were included. PPI use was associated with frequent exacerbator phenotype, but did not meaningfully influence the GERD-exacerbation association. Conclusions In COPD the presence of physician-diagnosed GERD is associated with increased symptoms, poorer QOL and increased frequency of exacerbations at baseline and during follow-up. These associations are maintained after controlling for PPI use. The PPI-exacerbations association could result from confounding-by-indication.http://deepblue.lib.umich.edu/bitstream/2027.42/109476/1/12931_2014_Article_1500.pd

    Genetic Association and Risk Scores in a Chronic Obstructive Pulmonary Disease Meta-analysis of 16,707 Subjects

    Get PDF
    The heritability of chronic obstructive pulmonary disease (COPD) cannot be fully explained by recognized genetic risk factors identified as achieving genome-wide significance. In addition, the combined contribution of genetic variation to COPD risk has not been fully explored. We sought to determine: (1) whether studies of variants from previous studies of COPD or lung function in a larger sample could identify additional associated variants, particularly for severe COPD; and (2) the impact of genetic risk scores on COPD. We genotyped 3,346 single-nucleotide polymorphisms (SNPs) in 2,588 cases (1,803 severe COPD) and 1,782 control subjects from four cohorts, and performed association testing with COPD, combining these results with existing genotyping data from 6,633 cases (3,497 severe COPD) and 5,704 control subjects. In addition, we developed genetic risk scores from SNPs associated with lung function and COPD and tested their discriminatory power for COPD-related measures. We identified significant associations between SNPs near PPIC (P = 1.28 X 10-8) and PPP4R4/SERPINA1 (P = 1.0131028) and severe COPD; the latter association may be driven by recognized variants in SERPINA1. Genetic risk scores based on SNPs previously associated with COPD and lung function had a modest ability to discriminate COPD (area under the curve, ~0.6), and accounted for a mean 0.9–1.9% lower forced expiratory volume in 1 second percent predicted for each additional risk allele. In a large genetic association analysis, we identified associations with severe COPD near PPIC and SERPINA1. A risk score based on combining genetic variants had modest, but significant, effects on risk of COPD and lung function

    Non-emphysematous chronic obstructive pulmonary disease is associated with diabetes mellitus

    Get PDF
    Abstract Background Chronic obstructive pulmonary disease (COPD) has been classically divided into blue bloaters and pink puffers. The utility of these clinical subtypes is unclear. However, the broader distinction between airway-predominant and emphysema-predominant COPD may be clinically relevant. The objective was to define clinical features of emphysema-predominant and non-emphysematous COPD patients. Methods Current and former smokers from the Genetic Epidemiology of COPD Study (COPDGene) had chest computed tomography (CT) scans with quantitative image analysis. Emphysema-predominant COPD was defined by low attenuation area at -950 Hounsfield Units (LAA-950) ≥10%. Non-emphysematous COPD was defined by airflow obstruction with minimal to no emphysema (LAA-950 < 5%). Results Out of 4197 COPD subjects, 1687 were classified as emphysema-predominant and 1817 as non-emphysematous; 693 had LAA-950 between 5–10% and were not categorized. Subjects with emphysema-predominant COPD were older (65.6 vs 60.6 years, p < 0.0001) with more severe COPD based on airflow obstruction (FEV1 44.5 vs 68.4%, p < 0.0001), greater exercise limitation (6-minute walk distance 1138 vs 1331 ft, p < 0.0001) and reduced quality of life (St. George’s Respiratory Questionnaire score 43 vs 31, p < 0.0001). Self-reported diabetes was more frequent in non-emphysematous COPD (OR 2.13, p < 0.001), which was also confirmed using a strict definition of diabetes based on medication use. The association between diabetes and non-emphysematous COPD was replicated in the ECLIPSE study. Conclusions Non-emphysematous COPD, defined by airflow obstruction with a paucity of emphysema on chest CT scan, is associated with an increased risk of diabetes. COPD patients without emphysema may warrant closer monitoring for diabetes, hypertension, and hyperlipidemia and vice versa. Trial registration Clinicaltrials.gov identifiers: COPDGene NCT00608764 , ECLIPSE NCT00292552 .http://deepblue.lib.umich.edu/bitstream/2027.42/109496/1/12890_2014_Article_599.pd
    • …
    corecore