10 research outputs found

    Ecosystem models of bivalve aquaculture: Implications for supporting goods and services

    Get PDF
    In this paper we focus on the role of ecosystem models in improving our understanding of the complex relationships between bivalve farming and the dynamics of lower trophic levels. To this aim, we review spatially explicit models of phytoplankton impacted by bivalve grazing and discuss the results of three case studies concerning an estuary (Baie des Veys, France), a bay, (Tracadie Bay, Prince Edward Island, Canada) and an open coastal area (Adriatic Sea, Emilia-Romagna coastal area, Italy). These models are intended to provide insight for aquaculture management, but their results also shed light on the spatial distribution of phytoplankton and environmental forcings of primary production. Even though new remote sensing technologies and remotely operated in situ sensors are likely to provide relevant data for assessing some the impacts of bivalve farming at an ecosystem scale, the results here summarized indicate that ecosystem modelling will remain the main tool for assessing ecological carrying capacity and providing management scenarios in the context of global drivers, such as climate change

    Socio-economic Aspects of Marine Bivalve Production

    Get PDF
    The aim of this book is to review and analyse the goods and services of bivalve shellfish. How they are defined, what determines the ecological functions that are the basis for the goods and services, what controversies in the use of goods and services exist, and what is needed for sustainable exploitation of bivalves from the perspective of the various stakeholders. The book is focused on the goods and services, and not on impacts of shellfish aquaculture on the benthic environment, or on threats like biotoxins; neither is it a shellfish culture handbook although it can be used in evaluating shellfish culture. The reviews and analysis are based on case studies that exemplify the concept, and show the strengths and weaknesses of the current applications. The multi-authored reviews cover ecological, economic and social aspects of bivalve goods and services. The book provides new insights for scientists, students, shellfish producers, policy advisors, nature conservationists and decision makers

    Towards the design of new and improved drilling fluid additives using molecular dynamics simulations

    No full text
    During exploration for oil and gas, a technical drilling fluid is used to lubricate the drill bit, maintain hydrostatic pressure, transmit sensor readings, remove rock cuttings and inhibit swelling of unstable clay based reactive shale formations. Increasing environmental awareness and resulting legislation has led to the search for new, improved biodegradable drilling fluid components. In the case of additives for clay swelling inhibition, an understanding of how existing effective additives interact with clays must be gained to allow the design of improved molecules. Owing to the disordered nature and nanoscopic dimension of the interlayer pores of clay minerals, computer simulations have become an increasingly useful tool for studying clay-swelling inhibitor interactions. In this work we briefly review the history of the development of technical drilling fluids, the environmental impact of drilling fluids and the use of computer simulations to study the interactions between clay minerals and swelling inhibitors. We report on results from some recent large-scale molecular dynamics simulation studies on low molecular weight water-soluble macromolecular inhibitor molecules. The structure and interactions of poly(propylene oxide)-diamine, poly(ethylene glycol) and poly(ethylene oxide)-diacrylate inhibitor molecules with montmorillonite clay are studied.<br>Durante a exploração de óleo e gás um fluido de perfuração é usado para lubrificar 'bit' da perfuradora, manter a pressão hidrostática, transmitir sensores de leitura, remover resíduos da rocha e inibir o inchamento da argila instável baseada nas formações dos folhelhos. O aumento das preocupações ambientais bem como a legislação resultante levou à procura de novos fluidos de perfuração com componentes biodegradáveis. No caso dos aditivos para inibir o inchamento das argilas o entendimento das interações entre os aditivos e as argilas tem que ser adquirido para permitir o projeto de moléculas commelhores propriedades. Devido à natureza desordenada da dimensão nanoscópica dos nano poros dos minerais argilosos, simulações computacionais têm se tornado uma ferramenta poderosa para estudar as interações entre o inchamento da argila e o inibidor. Neste trabalho revisamos brevemente o histórico do desenvolvimento de fluidos técnicos de perfuração, o impacto ambiental dos fluidos de perfuração e o uso de simulações computacionais para estudar as interações entre os fluidos de perfuração e os inibidores do inchamento. Nós reportamos resultados para alguns estudos baseados em simulações de dinâmica molecular em larga escala em uma solução aquosa de baixo peso molecular com solutos compostos por macromoléculas inibidoras. A estrutura e as interações entre inibidores compostos por polipropileno óxido, polietileno óxido e moléculas e a argila montmorilonita são estudadas

    Rationale, design, and baseline characteristics in Evaluation of LIXisenatide in Acute Coronary Syndrome, a long-term cardiovascular end point trial of lixisenatide versus placebo

    No full text
    BACKGROUND: Cardiovascular (CV) disease is the leading cause of morbidity and mortality in patients with type 2 diabetes mellitus (T2DM). Furthermore, patients with T2DM and acute coronary syndrome (ACS) have a particularly high risk of CV events. The glucagon-like peptide 1 receptor agonist, lixisenatide, improves glycemia, but its effects on CV events have not been thoroughly evaluated. METHODS: ELIXA (www.clinicaltrials.gov no. NCT01147250) is a randomized, double-blind, placebo-controlled, parallel-group, multicenter study of lixisenatide in patients with T2DM and a recent ACS event. The primary aim is to evaluate the effects of lixisenatide on CV morbidity and mortality in a population at high CV risk. The primary efficacy end point is a composite of time to CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for unstable angina. Data are systematically collected for safety outcomes, including hypoglycemia, pancreatitis, and malignancy. RESULTS: Enrollment began in July 2010 and ended in August 2013; 6,068 patients from 49 countries were randomized. Of these, 69% are men and 75% are white; at baseline, the mean ± SD age was 60.3 ± 9.7 years, body mass index was 30.2 ± 5.7 kg/m(2), and duration of T2DM was 9.3 ± 8.2 years. The qualifying ACS was a myocardial infarction in 83% and unstable angina in 17%. The study will continue until the positive adjudication of the protocol-specified number of primary CV events. CONCLUSION: ELIXA will be the first trial to report the safety and efficacy of a glucagon-like peptide 1 receptor agonist in people with T2DM and high CV event risk
    corecore