209 research outputs found

    Learning Economic Parameters from Revealed Preferences

    Full text link
    A recent line of work, starting with Beigman and Vohra (2006) and Zadimoghaddam and Roth (2012), has addressed the problem of {\em learning} a utility function from revealed preference data. The goal here is to make use of past data describing the purchases of a utility maximizing agent when faced with certain prices and budget constraints in order to produce a hypothesis function that can accurately forecast the {\em future} behavior of the agent. In this work we advance this line of work by providing sample complexity guarantees and efficient algorithms for a number of important classes. By drawing a connection to recent advances in multi-class learning, we provide a computationally efficient algorithm with tight sample complexity guarantees (Θ(d/ϵ)\Theta(d/\epsilon) for the case of dd goods) for learning linear utility functions under a linear price model. This solves an open question in Zadimoghaddam and Roth (2012). Our technique yields numerous generalizations including the ability to learn other well-studied classes of utility functions, to deal with a misspecified model, and with non-linear prices

    ImageNet Large Scale Visual Recognition Challenge

    Get PDF
    The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the five years of the challenge, and propose future directions and improvements.Comment: 43 pages, 16 figures. v3 includes additional comparisons with PASCAL VOC (per-category comparisons in Table 3, distribution of localization difficulty in Fig 16), a list of queries used for obtaining object detection images (Appendix C), and some additional reference

    Secure biometric authentication with improved accuracy

    Get PDF
    We propose a new hybrid protocol for cryptographically secure biometric authentication. The main advantages of the proposed protocol over previous solutions can be summarised as follows: (1) potential for much better accuracy using different types of biometric signals, including behavioural ones; and (2) improved user privacy, since user identities are not transmitted at any point in the protocol execution. The new protocol takes advantage of state-of-the-art identification classifiers, which provide not only better accuracy, but also the possibility to perform authentication without knowing who the user claims to be. Cryptographic security is based on the Paillier public key encryption scheme

    Profiles and Majority Voting-Based Ensemble Method for Protein Secondary Structure Prediction

    Get PDF
    Machine learning techniques have been widely applied to solve the problem of predicting protein secondary structure from the amino acid sequence. They have gained substantial success in this research area. Many methods have been used including k-Nearest Neighbors (k-NNs), Hidden Markov Models (HMMs), Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), which have attracted attention recently. Today, the main goal remains to improve the prediction quality of the secondary structure elements. The prediction accuracy has been continuously improved over the years, especially by using hybrid or ensemble methods and incorporating evolutionary information in the form of profiles extracted from alignments of multiple homologous sequences. In this paper, we investigate how best to combine k-NNs, ANNs and Multi-class SVMs (M-SVMs) to improve secondary structure prediction of globular proteins. An ensemble method which combines the outputs of two feed-forward ANNs, k-NN and three M-SVM classifiers has been applied. Ensemble members are combined using two variants of majority voting rule. An heuristic based filter has also been applied to refine the prediction. To investigate how much improvement the general ensemble method can give rather than the individual classifiers that make up the ensemble, we have experimented with the proposed system on the two widely used benchmark datasets RS126 and CB513 using cross-validation tests by including PSI-BLAST position-specific scoring matrix (PSSM) profiles as inputs. The experimental results reveal that the proposed system yields significant performance gains when compared with the best individual classifier

    Building multiclass classifiers for remote homology detection and fold recognition

    Get PDF
    BACKGROUND: Protein remote homology detection and fold recognition are central problems in computational biology. Supervised learning algorithms based on support vector machines are currently one of the most effective methods for solving these problems. These methods are primarily used to solve binary classification problems and they have not been extensively used to solve the more general multiclass remote homology prediction and fold recognition problems. RESULTS: We present a comprehensive evaluation of a number of methods for building SVM-based multiclass classification schemes in the context of the SCOP protein classification. These methods include schemes that directly build an SVM-based multiclass model, schemes that employ a second-level learning approach to combine the predictions generated by a set of binary SVM-based classifiers, and schemes that build and combine binary classifiers for various levels of the SCOP hierarchy beyond those defining the target classes. CONCLUSION: Analyzing the performance achieved by the different approaches on four different datasets we show that most of the proposed multiclass SVM-based classification approaches are quite effective in solving the remote homology prediction and fold recognition problems and that the schemes that use predictions from binary models constructed for ancestral categories within the SCOP hierarchy tend to not only lead to lower error rates but also reduce the number of errors in which a superfamily is assigned to an entirely different fold and a fold is predicted as being from a different SCOP class. Our results also show that the limited size of the training data makes it hard to learn complex second-level models, and that models of moderate complexity lead to consistently better results
    corecore