13,542 research outputs found
Modeling material failure with a vectorized routine
The computational aspects of modelling material failure in structural wood members are presented with particular reference to vector processing aspects. Wood members are considered to be highly orthotropic, inhomogeneous, and discontinuous due to the complex microstructure of wood material and the presence of natural growth characteristics such as knots, cracks and cross grain in wood members. The simulation of strength behavior of wood members is accomplished through the use of a special purpose finite element/fracture mechanics routine, program STARW (Strength Analysis Routine for Wood). Program STARW employs quadratic finite elements combined with singular crack tip elements in a finite element mesh. Vector processing techniques are employed in mesh generation, stiffness matrix formation, simultaneous equation solution, and material failure calculations. The paper addresses these techniques along with the time and effort requirements needed to convert existing finite element code to a vectorized version. Comparisons in execution time between vectorized and nonvectorized routines are provided
A quantum central limit theorem for non-equilibrium systems: Exact local relaxation of correlated states
We prove that quantum many-body systems on a one-dimensional lattice locally
relax to Gaussian states under non-equilibrium dynamics generated by a bosonic
quadratic Hamiltonian. This is true for a large class of initial states - pure
or mixed - which have to satisfy merely weak conditions concerning the decay of
correlations. The considered setting is a proven instance of a situation where
dynamically evolving closed quantum systems locally appear as if they had truly
relaxed, to maximum entropy states for fixed second moments. This furthers the
understanding of relaxation in suddenly quenched quantum many-body systems. The
proof features a non-commutative central limit theorem for non-i.i.d. random
variables, showing convergence to Gaussian characteristic functions, giving
rise to trace-norm closeness. We briefly relate our findings to ideas of
typicality and concentration of measure.Comment: 27 pages, final versio
Exact relaxation in a class of non-equilibrium quantum lattice systems
A reasonable physical intuition in the study of interacting quantum systems
says that, independent of the initial state, the system will tend to
equilibrate. In this work we study a setting where relaxation to a steady state
is exact, namely for the Bose-Hubbard model where the system is quenched from a
Mott quantum phase to the strong superfluid regime. We find that the evolving
state locally relaxes to a steady state with maximum entropy constrained by
second moments, maximizing the entanglement, to a state which is different from
the thermal state of the new Hamiltonian. Remarkably, in the infinite system
limit this relaxation is true for all large times, and no time average is
necessary. For large but finite system size we give a time interval for which
the system locally "looks relaxed" up to a prescribed error. Our argument
includes a central limit theorem for harmonic systems and exploits the finite
speed of sound. Additionally, we show that for all periodic initial
configurations, reminiscent of charge density waves, the system relaxes
locally. We sketch experimentally accessible signatures in optical lattices as
well as implications for the foundations of quantum statistical mechanics.Comment: 8 pages, 3 figures, replaced with final versio
Supersonic quantum communication
When locally exciting a quantum lattice model, the excitation will propagate
through the lattice. The effect is responsible for a wealth of non-equilibrium
phenomena, and has been exploited to transmit quantum information through spin
chains. It is a commonly expressed belief that for local Hamiltonians, any such
propagation happens at a finite "speed of sound". Indeed, the Lieb-Robinson
theorem states that in spin models, all effects caused by a perturbation are
limited to a causal cone defined by a constant speed, up to exponentially small
corrections. In this work we show that for translationally invariant bosonic
models with nearest-neighbor interactions, this belief is incorrect: We prove
that one can encounter excitations which accelerate under the natural dynamics
of the lattice and allow for reliable transmission of information faster than
any finite speed of sound. The effect is only limited by the model's range of
validity (eventually by relativity). It also implies that in non-equilibrium
dynamics of strongly correlated bosonic models far-away regions may become
quickly entangled, suggesting that their simulation may be much harder than
that of spin chains even in the low energy sector.Comment: 4+3 pages, 1 figure, some material added, typographic error fixe
Actin at cell-cell junctions is composed of two dynamic and functional populations
The ability of epithelial cells to polarize requires cell-cell adhesion mediated by cadherin receptors. During cell-cell contact, the mechanism via which a flat, spread cell shape is changed into a tall, cuboidal epithelial morphology is not known. We found that cadherin-dependent adhesion modulates actin dynamics by triggering changes in actin organization both locally at junctions and within the rest of the cell. Upon induction of cell-cell contacts, two spatial actin populations are distinguishable: junctional actin and peripheral thin bundles. With time, the relative position of these two populations changes and becomes indistinguishable to form a cortical actin ring that is characteristic of mature, fully polarized epithelial cells. Junctional actin and thin actin bundles differ in their actin dynamics and mechanism of formation, and interestingly, have distinct roles during epithelial polarization. Whereas junctional actin stabilizes clustered cadherin receptors at cell-cell contacts, contraction of peripheral actin bundle is essential for an increase in the maximum height at the lateral domain during polarization (cuboidal morphology). Thus, both junctional actin and thin bundles are necessary, and cooperate with each other to generate a polarized epithelial morphology
Exploring local quantum many-body relaxation by atoms in optical superlattices
We establish a setting - atoms in optical superlattices with period 2 - in
which one can experimentally probe signatures of the process of local
relaxation and apparent thermalization in non-equilibrium dynamics without the
need of addressing single sites. This opens up a way to explore the convergence
of subsystems to maximum entropy states in quenched quantum many-body systems
with present technology. Remarkably, the emergence of thermal states does not
follow from a coupling to an environment, but is a result of the complex
non-equilibrium dynamics in closed systems. We explore ways of measuring the
relevant signatures of thermalization in this analogue quantum simulation of a
relaxation process, exploiting the possibilities offered by optical
superlattices.Comment: 4 pages, 3 figures, version to published in Physical Review Letter
Entanglement genesis by ancilla-based parity measurement in 2D circuit QED
We present an indirect two-qubit parity meter in planar circuit quantum
electrodynamics, realized by discrete interaction with an ancilla and a
subsequent projective ancilla measurement with a dedicated, dispersively
coupled resonator. Quantum process tomography and successful entanglement by
measurement demonstrate that the meter is intrinsically quantum non-demolition.
Separate interaction and measurement steps allow commencing subsequent data
qubit operations in parallel with ancilla measurement, offering time savings
over continuous schemes.Comment: 5 pages, 4 figures; supplemental material with 5 figure
Statistics dependence of the entanglement entropy.
Published versio
Thruster Injector Faceplate Testing in Support of the Aerojet Rocket-Based Combined Cycle (RBCC) Concept
To satisfy RBCC rocket thruster requirements of high performance and a minimum amount of free hydrogen at plume boundary, a new impinging injector element using gaseous hydrogen and gaseous oxygen as the propellants has been designed. Analysis has shown that this injector design has potential to provide a high specific impulse (Isp) while minimizing the amount of free hydrogen that is available to be burned with incoming secondary flow. Past studies and test programs have shown that gas/gas-impinging elements typically result in high injector face temperatures due to combustion occurring close to the face. Since this design is new, there is no hot fire experience with this element. Objectives of this test program were to gain experience and hot fire test data on this new rocket thruster element design and injector faceplate pattern. Twenty-two hot fire tests were run with maximum mixture ratio (MR) and chamber pressure (Pc) obtained at 7.25 and 1,822 psia, respectively. Post-test scanning microscope (SEM) images show only slight faceplate erosion during testing. This injector element design performed well and can be operated at design conditions: (1) Pc of 2,000 psia and MR of 7.0 and (2) Pc of 1,000 psia and MR of 5.0
- …