315 research outputs found
Efficient quantum state tomography
Quantum state tomography, the ability to deduce the state of a quantum system
from measured data, is the gold standard for verification and benchmarking of
quantum devices. It has been realized in systems with few components, but for
larger systems it becomes infeasible because the number of quantum measurements
and the amount of computation required to process them grows exponentially in
the system size. Here we show that we can do exponentially better than direct
state tomography for a wide range of quantum states, in particular those that
are well approximated by a matrix product state ansatz. We present two schemes
for tomography in 1-D quantum systems and touch on generalizations. One scheme
requires unitary operations on a constant number of subsystems, while the other
requires only local measurements together with more elaborate post-processing.
Both schemes rely only on a linear number of experimental operations and
classical postprocessing that is polynomial in the system size. A further
strength of the methods is that the accuracy of the reconstructed states can be
rigorously certified without any a priori assumptions.Comment: 9 pages, 4 figures. Combines many of the results in arXiv:1002.3780,
arXiv:1002.3839, and arXiv:1002.4632 into one unified expositio
Thermal-Spray Coatings for Coastal Infrastructure
ABSTRACT Several protection strategies for coastal infrastructure using thermal-spray technology are presented from research at the Albany Research Center. Thermal-sprayed zinc coatings for anodes in impressed current cathodic protection systems are used to extend the service lives of reinforced concrete bridges along the Oregon coast. Thermal-sprayed Ti is examined as an alternative to the consumable zinc anode. Sealed thermal-sprayed Al is examined as an alternative coating to zinc dust filled polyurethane paint for steel structures
Recommended from our members
Oxidation of alloys for advanced steam turbines
Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections
The Phanerozoic Record of Global Sea-Level Change
We review Phanerozoic sea-level changes [543 million years ago (Ma) to the present] on various time scales and present a new sea-level record for the past 100 million years (My). Long-term sea level peaked at 100 ± 50 meters during the Cretaceous, implying that ocean-crust production rates were much lower than previously inferred. Sea level mirrors oxygen isotope variations, reflecting ice-volume change on the 104- to 106-year scale, but a link between oxygen isotope and sea level on the 107-year scale must be due to temperature changes that we attribute to tectonically controlled carbon dioxide variations. Sea-level change has influenced phytoplankton evolution, ocean chemistry, and the loci of carbonate, organic carbon, and siliciclastic sediment burial. Over the past 100 My, sea-level changes reflect global climate evolution from a time of ephemeral Antarctic ice sheets (100 to 33 Ma), through a time of large ice sheets primarily in Antarctica (33 to 2.5 Ma), to a world with large Antarctic and large, variable Northern Hemisphere ice sheets (2.5 Ma to the present)
Unconditional positive self-regard, intrinsic aspirations and authenticity: pathways to psychological well-being
Unconditional positive self-regard (UPSR) is regarded by humanistic psychologists as an important determinant of well-being. However, until recently it has received little empirical attention. The current study aims to examine the association between unconditional positive self-regard and several key constructs consistent with the ideas of well-being within contemporary positive psychology. Study 1 is a confirmatory factor analysis of the UPSR scale. The statistically significant best fit for the data was a related two-factor model. Study 2 used the two-factors of the UPSR scale to explore the association with intrinsic aspirations. The study showed positive self-regard was statistically significantly positively correlated with the intrinsic aspirations total scale and with each of the separate scores for IA-importance and IA-chance. Unconditionality of regard was statistically significantly negatively correlated with IA-importance but was not statistically significantly correlated to either the IA-total or IA-chance scores. Study 3 considers the association between UPSR, intrinsic aspirations and authenticity. Unconditionality of regard was statistically significantly positively correlated with the authenticity scale score. Only IA-chance scores showed a statistically significant and positive correlation with authenticity. The remaining correlations between intrinsic aspirations and authenticity were not statistically significant. Results call for further empirical attention to UPSR within positive psychology research
Recommended from our members
Thermal-sprayed zinc anodes for cathodic protection of steel-reinforced concrete bridges
Thermal-sprayed zinc anodes are being used in Oregon in impressed current cathodic protection (ICCP) systems for reinforced concrete bridges. The U.S. Department of Energy, Albany Research Center, is collaborating with the Oregon Department of Transportation (ODOT) to evaluate the long-term performance and service life of these anodes. Laboratory studies were conducted on concrete slabs coated with 0.5 mm (20 mil) thick, thermal-sprayed zinc anodes. The slabs were electrochemically aged at an accelerated rate using an anode current density of 0.032 A/m2 (3mA/ft2). Half the slabs were preheated before thermal-spraying with zinc; the other half were unheated. Electrochemical aging resulted in the formation at the zinc-concrete interface of a thin, low pH zone (relative to cement paste) consisting primarily of ZnO and Zn(OH)2, and in a second zone of calcium and zinc aluminates and silicates formed by secondary mineralization. Both zones contained elevated concentrations of sulfate and chloride ions. The original bond strength of the zinc coating decreased due to the loss of mechanical bond to the concrete with the initial passage of electrical charge (aging). Additional charge led to an increase in bond strength to a maximum as the result of secondary mineralization of zinc dissolution products with the cement paste. Further charge led to a decrease in bond strength and ultimately coating disbondment as the interfacial reaction zones continued to thicken. This occurred at an effective service life of 27 years at the 0.0022 A/m2 (0.2 mA/ft2) current density typically used by ODOT in ICCP systems for coastal bridges. Zinc coating failure under tensile stress was primarily cohesive within the thickening reaction zones at the zinc-concrete interface. There was no difference between the bond strength of zinc coatings on preheated and unheated concrete surfaces after long service times
Recommended from our members
Dual-Environment Effects on the Oxidation of Metallic Interconnects
Metallic interconnects in solid oxide fuel cells are exposed to a dual environment: fuel on one side (i.e., H2 gas) and oxidizer on the other side (i.e., air). It has been observed that the oxidation behavior of thin stainless steel sheet in air is changed by the presence of H2 on the other side of the sheet. The resulting dual-environment scales are flaky and more friable than the single-environment scales. The H2 disrupts the scale on the air side. A model to explain some of the effects of a dual environment is presented where hydrogen diffusing through the stainless steel sheet reacts with oxygen diffusing through the scale to form water vapor, which has sufficient vapor pressure to mechanically disrupt the scale. Experiments on preoxidized 316L stainless steel tubing exposed to air-air, H2-air, and H2-Ar environments are reported in support of the model
Recommended from our members
Electrochemical corrosion rate probes for high temperature energy applications
Electrochemical corrosion rate (ECR) probes were constructed and exposed along with mass loss coupons in a N2/O2/CO2/H2O environment to determine ECR probe operating characteristics. Temperatures ranged from 450 to 800 C and both ECR probes and mass loss coupons were coated with ash. Results are presented in terms of the probe response to temperature, the measured zero baseline, and the quantitative nature of the probes. The effect of Stern-Geary constant and the choice of electrochemical technique used to measure the corrosion rate are also discussed. ECR probe corrosion rates were a function of time, temperature, and process environment and were found to be quantitative for some test conditions. Measured Stern-Geary constants averaged 0.0141 V/decade and the linear polarization technique was found to be more quantitative than the electrochemical noise technique
Recommended from our members
Ultra supercritical turbines--steam oxidation
Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy?s Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538?C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620?C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which would require steam temperatures of up to 760?C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented
- …