15 research outputs found

    Integration of twisted Dirac brackets

    Full text link
    The correspondence between Poisson structures and symplectic groupoids, analogous to the one of Lie algebras and Lie groups, plays an important role in Poisson geometry; it offers, in particular, a unifying framework for the study of hamiltonian and Poisson actions. In this paper, we extend this correspondence to the context of Dirac structures twisted by a closed 3-form. More generally, given a Lie groupoid GG over a manifold MM, we show that multiplicative 2-forms on GG relatively closed with respect to a closed 3-form ϕ\phi on MM correspond to maps from the Lie algebroid of GG into the cotangent bundle TMT^*M of MM, satisfying an algebraic condition and a differential condition with respect to the ϕ\phi-twisted Courant bracket. This correspondence describes, as a special case, the global objects associated to twisted Dirac structures. As applications, we relate our results to equivariant cohomology and foliation theory, and we give a new description of quasi-hamiltonian spaces and group-valued momentum maps.Comment: 42 pages. Minor changes, typos corrected. Revised version to appear in Duke Math.

    Integration of Dirac-Jacobi structures

    Full text link
    We study precontact groupoids whose infinitesimal counterparts are Dirac-Jacobi structures. These geometric objects generalize contact groupoids. We also explain the relationship between precontact groupoids and homogeneous presymplectic groupoids. Finally, we present some examples of precontact groupoids.Comment: 10 pages. Brief changes in the introduction. References update

    Integration of Lie 2-algebras and their morphisms

    Get PDF
    Given a strict Lie 2-algebra, we can integrate it to a strict Lie 2-group by integrating the corresponding Lie algebra crossed module. On the other hand, the integration procedure of Getzler and Henriques will also produce a 2-group. In this paper, we show that these two integration results are Morita equivalent. As an application, we integrate a non-strict morphism between Lie algebra crossed modules to a generalized morphism between their corresponding Lie group crossed modules.Comment: 19 pages, Lett. Math. Phys. 102 (2), (2012.11), 223-24
    corecore