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Abstract. Given a strict Lie 2-algebra, we can integrate it to a strict Lie 2-group by inte-
grating the corresponding Lie algebra crossed module. On the other hand, the integration
procedure of Getzler and Henriques will also produce a 2-group. In this paper, we show
that these two integration results are Morita equivalent. As an application, we integrate
a non-strict morphism between Lie algebra crossed modules to a generalized morphism
between their corresponding Lie group crossed modules.
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1. Introduction

Recently people have paid much attention to the integration of Lie-algebra-like
structures, such as that of Lie algebroids [7,9,27], of L∞-algebras [13,14] and of
Courant algebroids [17,19,24]. Here “integration” is meant in the same sense in
which a Lie algebra is integrated to a corresponding Lie group.

For an L∞-algebra h, there is an infinite dimensional Kan simplicial space
∫

h

constructed in [13,14], whose k-cells are given by L∞-algebroid morphisms T �k→
h. Applying to a strict Lie 2-algebra h, the 2-truncation τ2(

∫
h) is a 2-group which

is believed to be the universal integration of h.
On the other hand, a strict Lie 2-algebra (resp. strict Lie 2-group) one-to-one

corresponds to a Lie algebra (resp. Lie group) crossed module. Thus, a strict Lie
2-algebra can be easily integrated to a strict Lie 2-group by integrating its corre-
sponding crossed module. In this article, we prove that these two integration results
are Morita equivalent. Already noticed in [4], the classifying Postnikov data of Lie
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2-algebras is the quotient Lie algebra in degree 0, a choice of Lie module and
of a corresponding 3-cocycle. When the Lie module structure is trivial, as in the
case of string Lie 2-algebra, the above Morita equivalence may be implied via a
homotopy theoretical method (see [11, Section 4.1.3]). Our article further provides
an explicit Morita morphism generally regardless the triviality of the Lie module.
We must warn the readers that we treat finite dimensional case only because we
need to use the fact that the second homotopy group of a Lie group is trivial, and
this is true only in the finite dimensional case.

As L∞-algebras and their integration play an important role in higher gauge
theory [5] and higher Chern–Weil theory [11], we believe our explicit construction
will have potential application in mathematical physics.

As an application, we use the above result to integrate a nonstrict morphism
between strict Lie 2-algebras to a generalized morphism between their strict Lie
2-groups. We must mention that an integration of such morphisms is also provided
via the technique of butterflies in [20]. Here we also provide some mathematical
physics oriented examples of such morphisms: they can encode 2-term L∞-mod-
ules of g in the sense of [16], or equivalently, 2-term representation up to homot-
opy in the sense of [2], non-abelian extensions of g, and up to homotopy Poisson
actions of g in the sense of [21]. Further application of the integration is provided
in [23].

2. Equivalence of Integrations

For an L∞-algebra h, there is an infinite dimensional Kan simplicial space
∫

h con-
structed in [13,14],

hk :=Homd.g.c.a.(∧•(h),�•(�k)).

Here we remind the readers that ∧•(h) has a natural differential graded commu-
tative algebra (d.g.c.a.) structure which generalizes the Chevalley–Eilenberg com-
plex for a Lie algebra. It is shown in this paper, that when h is a Lie algebra,
the one-truncation τ1(h) is exactly the nerve of the simply connected Lie group H
integrating h.

When h is a strict Lie 2-algebra corresponding to the crossed module h1
d−→ h0,

the two-truncation τ2(h) is a 2-group. On the other hand, there is another natu-
ral Lie 2-group corresponding to the integrated crossed module of Lie groups (see

Definition 2.6) H1
d−→H0, where H0 and H1 are simply connected Lie groups of h0

and h1 respectively (for this integration see for example [23, Remark 3.7]). In this
section, we show the isomorphisms between these two 2-groups.

2.1. BACKGROUND ON L∞ ALGEBRAS

In this section, we briefly review the notions of L∞-algebras and crossed modules
of Lie algebras. They both provide models for strict Lie 2-algebras.
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L∞-algebras, sometimes called strongly homotopy Lie algebras, were introduced
by Stasheff [25] as a model for “Lie algebras that satisfy Jacobi identity up to all
higher homotopies”. The following convention of L∞-algebras is the same as Lada
and Markl [16].

DEFINITION 2.1. An L∞-algebra is a graded vector space L = L0 ⊕ L1 ⊕ · · ·
equipped with a system {lk | 1≤ k <∞} of linear maps lk : ∧k L −→ L with degree
deg(lk)= k− 2, where the exterior powers are interpreted in the graded sense and
the following relation with Ksozul sign “Ksgn” is satisfied for all n≥0:

∑

i+ j=n+1

(−1)i( j−1)
∑

σ

sgn(σ )Ksgn(σ )l j (li (xσ(1), . . . , xσ(i)),

xσ(i+1), . . . , xσ(n))=0, (1)

where the summation is taken over all (i,n− i)-unshuffles with i ≥1.

If L is concentrated in degrees <n, we obtain the notion of n-term L∞-algebras.
A semi-strict Lie 2-algebra can be understood as a 2-term L∞-algebra. a strict Lie
2-algebra is a 2-term L∞-algebra, in which l3 is zero (see [4]).

DEFINITION 2.2. A crossed module of Lie algebras is a quadruple (h1,h0,dt, φ),
where h1 and h0 are Lie algebras, dt :h1−→h0 is a Lie algebra morphism and φ :
h0−→Der(h1) is an action of Lie algebra h0 on Lie algebra h1 as a derivation,
such that

dt (φu(m))=[u,dt (m)]h0, φdt (m)(n)=[m,n]h1 .

Here Der(h1) is the derivation Lie algebra of h1 with the commutation Lie bracket
[·, ·]C .

The following result is well known.

THEOREM 2.3. There is a one-to-one correspondence between strict Lie 2-algebras
and crossed modules of Lie algebras.

For the precise relation between the operation l2 and the Lie brackets [·, ·]h0 and
[·, ·]h1 , please see [23]. The key difference is that l2(m,n)=0, for any m,n∈ L1=h1,
and [m,n]h1 = l2(dm,n) 	=0. On the direct sum h0⊕h1, there is also a Lie bracket
[·, ·]h0⊕h1 , which is the semidirect product of the Lie algebra h0 and the Lie alge-
bra h1:

[u+m, v+n]h0⊕h1 = l2(u, v)+ l2(u,n)+ l2(m, v)+[m,n]h1 . (2)
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EXAMPLE 2.4. For any Lie algebra k, (k,Der(k),ad, Id) is a crossed module of

Lie algebras. We denote by k
ad−→Der(k) the corresponding strict Lie 2-algebra.

2.2. BACKGROUND ON 2-GROUPS

A group is a monoid where every element has an inverse. A 2-group is a monoi-
dal category where every object has a weak inverse and every morphism has an
inverse. Denote the category of smooth Banach manifolds and smooth maps by
Diff , a semistrict Lie 2-group is a 2-group in DiffCat, where DiffCat is the 2-cate-
gory consisting of categories, functors, and natural transformations in Diff . In the
sequel, all the Lie 2-groups are semistrict.

DEFINITION 2.5. A semistrict Lie 2-group consists of an object C in DiffCat
together with

• a multiplication morphism (horizontal multiplication) ·h :C×C−→C ,
• identity object 1,
• an inverse map inv :C−→C

together with the following natural isomorphisms::

• the associator

ax,y,z : (x ·h y) ·h z−→ x ·h (y ·h z),

• the left and right unit

lx :1 ·h x−→ x, rx : x ·h 1−→ x,

• the unit and counit

ix :1−→ x ·h inv(x), ex : inv(x) ·h x−→1,

such that the pentagon identity for the associator, the triangle identity for the left
and right unit, the first and second zig-zag identities are satisfied. We refer to
[3, Definition 7.1].

As pointed out in [3, Section 7], if the category C carries a semistrict Lie
2-group structure, then C must be a Lie groupoid. We denote the groupoid multi-
plication in C by ·v (vertical multiplication).

In the special case when ax,y,z, lx , rx , ix , ex are all identity isomorphisms, we
obtain the concept of a strict Lie 2-group. It is well-known that strict Lie 2-groups
can be described by crossed modules of Lie groups.

DEFINITION 2.6. A crossed module of Lie groups is a quadruple (H1, H0, t,�),
where H0 and H1 are Lie groups, t : H1−→ H0 is a Lie group morphism, and � :
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H0× H1−→ H1 is an action of H0 on H1 as automorphisms of H1 such that t is
H0-equivariant:

t�g(h)= gt (h)g−1, ∀g∈H0, h ∈H1, (3)

and t satisfies the so called Peiffer identity:

�t (h)(h
′)=hh′h−1, ∀h, h′ ∈H1. (4)

The following result is well-known, see [3,12] for more details.

THEOREM 2.7. There is a one-to-one correspondence between crossed modules of
Lie groups and strict Lie 2-groups.

Roughly speaking, given a crossed module (H1, H0, t,�) of Lie groups, the cor-
responding strict Lie 2-group has C0=H0 and C1=H0 � H1, the semidirect product
of H0 and H1. In this strict Lie 2-group, the source and target maps s, t :C1−→C0

are given by:

s(g, h)= g, t (g, h)= t (h) · g,

the vertical multiplication ·v is given by:

(g′, h′) ·v (g, h)= (g, h′ ·h), where g′ = t (h) · g, (5)

the horizontal multiplication ·h is given by:

(g, h) ·h (g′, h′)= (g · g′, h ·�g(h
′)). (6)

DEFINITION 2.8. Given two Lie 2-groups C and C ′, a unital morphism F :C−→
C ′ consists of a smooth functor (F0, F1) :C−→C ′ equipped with a 2-isomorphism

F2(x, y) : F0(x) ·h F0(y)−→ F0(x ·h y),

such that F0(1C )=1C ′ and the following diagrams commute:

• the compatibility condition of F2 with the associator:

(F0(x) ·h F0(y)) ·h F0(z) ��

��

F0(x ·h y) ·h F0(z) �� F0((x ·h y) ·h z)

��
F0(x) ·h (F0(y) ·h F0(z)) �� F0(x) ·h F0(y ·h z) �� F0(x ·h (y ·h z)),

(7)
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• the compatibility condition of F2 with the left and right unit:

1C ′ ·h F0(x)
lF0(x) ��

Id
��

F0(x)

F0(1C ) ·h F0(x)
F2(1C ,x) �� F0(1C ·h x)

F1(lx )

�� F0(x) ·h 1C ′
rF0(x) ��

Id
��

F0(x)

F0(x) ·h F0(1C )
F2(x,1C ) �� F0(x ·h 1C ).

F1(rx )

�� (8)

2.3. EQUIVALENCE OF TWO 2-GROUPS

Given a Lie algebra g, denote by Pg the usual C2 path space in g and by P0g the
C2 path space in g with a convenient boundary condition,

P0g={a :C2 morphism from [0,1] tog| a(0)=a(1)=0, a′(0)=a′(1)=0}. (9)

Then both Pg and P0g naturally have a smooth structure of Banach manifold
because we choose C2 paths (see for example [27, Section 2]). From now on, when
not specially mentioned, all morphisms are of C2-classes.

The paths a0 and a1 are said to be g-homotopic and we write a0 ∼ a1, if there
exist C2-morphisms a,b : [0,1]×2→g satisfy the following differential equation

∂t b(t, s)−∂sa(t, s)=[a(t, s),b(t, s)]g (10)

with boundary value b(0, s)= 0, b(1, s)= 0,a(t,0)= a0(t) and a(t,1)= a1(t). This
is equivalent [8] to the fact that,

a(t, s)dt+b(t, s)ds :T I ×T I −→g

is a Lie algebroid morphism and b(0, s)=b(1, s)=0. The g-homotopy also restricts
to P0g (see [27]). Then the simply connected Lie group G of g is the quotient

G∼= P0g/∼= Pg/∼:= τ1

(∫
g

)

,

(see [10, Section 1.13] for more details).
Next, we recall the construction ([14]) of the 2-group structure of τ2(

∫
h) for a

strict Lie 2-algebra h. Let

P1h := {a :C2 morphism [0,1]→h}={a :C2 morphism [0,1]→h0},
and

P2h := {(a,b, z) : [0,1]×2 (a,b,z)−−−−→h0⊕h0⊕h1|∂t b−∂sa= l2(a,b)+dz,

b(0, s)=b(1, s)= z(0, s)= z(1, s)=0}.
There is an equivalence relation ∼ defined on P2h: (a0,b0, z0)∼ (a1,b1, z1) if and
only if there are

(a,b, c) : [0,1]×3→h0, (x, y, z) : [0,1]×3→h1,
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such that

∂t b−∂sa= l2(a,b)+dz, (11)

∂t c−∂ua= l2(a, c)+dy, (12)

∂sc−∂ub= l2(b, c)+dx, (13)

∂uz−∂s y+∂t x= l2(a, x)− l2(b, y)+ l2(c, z) (14)

with boundary conditions:

c(t, s,u), x(t, s,u), y(t, s,u)|t=0 or 1,or s=0 or 1=0, z(t, s,u)|t=0 or 1=0,

and

a(t, s,0)=a0,a(t, s,1)=a1,b(t, s,0)=b0,b(t, s,1)=b1, z(t, s,0)= z0, z(t, s,1)= z1,

a(t,0,u)=a0(t,0)=a1(t,0), a(t,1,u)=a0(t,1)=a1(t,1).

Then P2h/ ∼⇒ P1h is a groupoid with the source and target evaluation of a
on s = 0 and s = 1 respectively. Moreover the 2-group of τ2(

∫
h) is exactly the

2-group structure on P2h/∼⇒ P1h with vertical multiplication the concatenation
with respect to the parameter s and horizontal multiplication the concatenation
with respect to the parameter t . Later on we will give a reparametrized horizontal
multiplication (21) (22) (23) for convenience. However, we notice that reparametri-
zation will not change the class in P2h:

LEMMA 2.9. Given an element (a,b, z) ∈ P2h and reparametrizations τi : [0,1]→
[0,1], (a,b, z)∼ (aτ ,bτ , zτ )∈ P2h, where

aτ (t, s)= τ ′1(t)a(τ1(t), τ2(s)), bτ (t, s)= τ ′2(s)b(τ1(t), τ2(s)),

zτ (t, s)= τ ′1(t)τ
′
2(s)z(τ1(t), τ2(s)).

Proof. In general, elements in Pnh are d.g.c.a. morphisms ∧•h→�•([0,1]×n)

with certain boundary conditions, and the homotopies ∼ are d.g.c.a. mor-
phisms ∧•h→ �•([0,1]×(n+1)) with certain boundary conditions. We define h :
[0,1]×(n+1)→[0,1]×n

h(t1, . . . , tn+1) :=
(
((1− tn+1)t1+ tn+1τ1(t1)), . . . , (1− tn+1)tn+ tn+1τn(tn)

)
,

pulling back forms by h provides the desired homotopy. See also [8, Remark 3.10]
and [9, Lemma 1.5] for similar treatment.

We first construct our equivalence with the help of a couple of lemmas.

LEMMA 2.10. Let (a,b, z)∈ P2h. Let �b : [0,1]×2−→h1 satisfy the following ordi-
nary differential equation

∂t�b= l2(a,�b)− z (15)
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with initial value �b(0, s)=0. Denote b+d�b by b̃, then we have

∂t b̃−∂sa=[a, b̃]h0 . (16)

Proof. The conclusion follows from:

∂t b̃−∂sa−[a, b̃]h0 =∂t b+∂t d�b−∂sa−[a,b]h0 −[a,d�b]h0

=∂t d�b+dz−[a,d�b]h0

=d(∂t�b+ z− l2(a,�b))=0.

�
Since �b(0, s)=0, we have b̃(0, s)=b(0, s)+d�b(0, s)=0. But b̃(1, s)=b(1, s)+

d�b(1, s)=d�b(1, s) is not necessarily zero and this is exactly the obstruction of
a(−,0) and a(−,1) being homotopic.

PROPOSITION 2.11. With the above notations, the concatenation of d�b(1,−) and
a(−,0) is homotopic to a(−,1) in Ph0, i.e. we have

d�b(1,−)�a(−,0)∼a(−,1).

where the concatenation � of two paths, a(t) and b(t) is defined as follows:

a(t)�b(t)=
{

2τ ′(t)b(τ (2t)) 0≤ t ≤ 1
2

2τ ′(t)a(τ (2t)) 1
2 ≤ t ≤1

, (17)

with a cut-off function τ : [0,1]→[0,1] such that

τ(0)=0, τ (1)=1, τ ′(t)>0, ∀t ∈[0,1]. (18)

Proof. Since we have ∂t b̃−∂sa=[a, b̃], there exists a family of paths, g(t, s) in
the Lie group H0 such that

∂t g(t, s) · g(t, s)−1=a(t, s), ∂s g(t, s) · g(t, s)−1= b̃(t, s).

Since b̃(0, s)= 0, we know that g(0, s) is fixed. Since b̃(1, s) 	= 0, g(1, s) is not a
constant path in H0. So g(t,0) and g(t,1) are not homotopic. However, it is obvi-
ous that the concatenation of g(1, s) and g(t,0) is homotopic to g(t,1) in the Lie
group H0. Therefore, the corresponding h0-paths are h0-homotopic.

LEMMA 2.12. Let h0 and h1 be two Lie algebras, φ :h0−→Der(h1) a Lie algebra
morphism, i.e. Lie algebra h0 acts on Lie algebra h1 as a derivation. Let ϕ :H0−→
Aut(h1) be the Lie group morphism which integrates φ, and h ∈ H0 represented by
a(t)∈ Ph0, i.e. h=[a(t)]. Then for any v∈h1 and v(s)∈ Ph1, we have
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(1) ϕh(v)=w(1), where w(t)∈ Ph1 is the solution of the following ODE:

d
dt

w(t)=φa(t)w(t)

with the initial value w(0)=v.
(2) ϕhv(s)=w(1, s), where w(t, s) is the solution of the following ODE:

∂tw(t, s)=φa(t)w(t, s) (19)

with the initial value w(0, s)=v(s).

Consequently, the corresponding group action of H0 on H1, say � : H0−→Aut(H1)

is given by:

�h([v(s)])=[ϕhv(s)]= [w(1, s)]. (20)

Proof. Let h(t) : [0,1]−→ H0 be a path such that h(0)= e, h(1)= h and a(t)=
ḣ(t)h(t)−1. Then, we have φa(t) = ϕ̇h(t)ϕ

−1
h(t), which implies that φa(t) ◦ ϕh(t)(v) =

ϕ̇h(t)(v). Take w(t)=ϕh(t)(v), then w(t) satisfies the following ODE:

ẇ(t)=φa(t)w(t)

with the initial value w(0)=ϕh(0)(v)=ϕe(v)=v. Obviously, ϕh(v)=ϕh(1)(v)=w(1).
This completes the proof of item (1). Item (2) can be proved similarly.

For bigons • •
a0

��

a1

�� z
��

and • •
a†

0

��

a†
1

�� z†

��
, which represent (a,b, z),

(a†,b†, z†)∈ P2h, respectively, assume that �b and �b† are the corresponding solu-
tions of (15) respectively. We reparametrized the concatenation with respect to t ,

namely the bigon of horizontal multiplication • •
a0

��

a1

�� z
��

•
a†

0

��

a†
1

�� z†

��
as

a‡(t, s)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a†(t,2s), 0≤ t ≤1, 0≤ s≤ 1
2

a†
1(t), 0≤ t ≤1, 1

2 ≤ s≤1
a0(t−1), 1≤ t ≤2, 0≤ s≤ 1

2
a(t−1,2s−1), 1≤ t ≤2, 1

2 ≤ s≤1

(21)

b‡(t, s)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2b†(t,2s), 0≤ t ≤1, 0≤ s≤ 1
2

0, 0≤ t ≤1, 1
2 ≤ s≤1

0, 1≤ t ≤2, 0≤ s≤ 1
2

2b(t−1,2s−1), 1≤ t ≤2, 1
2 ≤ s≤1,

(22)
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z‡(t, s)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2z†(t,2s), 0≤ t ≤1, 0≤ s≤ 1
2

0, 0≤ t ≤1, 1
2 ≤ s≤1

0, 1≤ t ≤2, 0≤ s≤ 1
2

2z(t−1,2s−1), 1≤ t ≤2, 1
2 ≤ s≤1,

(23)

and denote by �b‡ the corresponding solution of (15).

LEMMA 2.13. With the above notations, we have

�b‡(2, s)=�b(1, s)�w(1, s), (24)

where w(t, s) : [0,1]×2−→h1 is the solution of the following ODE:

∂tw(t, s)= l2(a0(t),w(t, s)) (25)

with the initial value w(0, s)=�b†(1, s).

Proof. We prove a more general formula:

�b‡(t, s)=
{

0�s �b†(t, s), 0≤ t ≤1
�b(t−1, s)�s w(t−1, s) 1≤ t ≤2.

When 0≤ t ≤1,

�b‡(t, s)=
{

2�b†(t, s), 0≤ s≤ 1
2

0 1
2 ≤ s≤1.

Then, when 0≤ s≤ 1
2 , �b‡(t, s) satisfies (15) since �b†(t, s) does; when 1

2 ≤ s≤ 1,

�b‡(t, s)=0 obviously satisfies (15).
When 1≤ t ≤2, by straightforward computations, we have

∂t�b‡(t, s)

=∂t�b(t−1, s)�s ∂tw(t−1, s)

=
(

l2(a(t−1, s),�b(t−1, s))− z(t−1, s))
)
�s l2(a0(t−1),w(t−1, s))

=
{

2l2(a0(t−1),w(t−1,2s)), 0≤ s≤ 1
2 ,

2l2(a(t−1,2s−1),�b(t−1,2s−1))−2z(t−1,2s−1), 1
2 ≤ s≤1.

= l2(a
‡(t, s),�b‡(t, s))− z‡(t, s).

The last equality holds because when 1≤ t ≤2, 0≤ s≤ 1
2 , b‡(t, s)=0.

Define 	1 : P2h−→H0 � H1 by

	1

(
• •

a0

��

a1

�� z
��

)
= ([a0], [�b(1, s)]), (26)
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in which �b is the unique solution of (15) with the initial value �b(0, s)= 0. To
see that 	1 is well defined, for two elements (a0,b0, z0) and (a1,b1, z1) in P2h

equivalent through (a,b, c, x, y, z),

• •,
a0

��

a1

�� z0
��

• •
a0

��

a1

�� z1
��

, A= • •,
a0

��

a1

�� z1

��
z0

		

we need to prove that �b(1, s,0) and �b(1, s,1) are homotopic in the Lie algebra
h1. This follows from the next lemma.

LEMMA 2.14. Let (a,b, c, x, y, z) be as above. Let �b, �c: [0,1]×3→ h1 be the
solution of the following ordinary differential equations:

∂t�b= l2(a,�b)− z, (27)

∂t�c= l2(a,�c)− y, (28)

with the initial value �b(0, s,u)=�c(0, s,u)=0, we have

∂s�c(1, s,u)−∂u�b(1, s,u)=[�b(1, s,u),�c(1, s,u)]h1 (29)

and

�c(1,1,u)=0. (30)

Hence �b(1, s,0) and �b(1, s,1) are homotopic.

Proof. Denote b̃=b+d�b, c̃= c+d�c, by Lemma 2.10, we have

∂t b̃−∂sa=[a, b̃]h0 , (31)

∂t c̃−∂ua=[a, c̃]h0 . (32)

Denote a=a, b=b+�b and c= c+�c. By (27) and (44), we have1

∂t b−∂sa=[a,b]h0 +dz+ l2(a,�b)− z

=[a,b]h0⊕h1 +dz− z.

Similarly, we have

∂t c−∂ua=[a, c]h0⊕h1 +dy− y. (33)

Next we prove that

∂sc−∂ub=[b, c]h0⊕h1 +dx− x . (34)

1See (2) for the definition [·, ·]h0⊕h1
.
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By straightforward computations, we have

∂t
(
∂sc−∂ub−[b, c]h0⊕h1

)

=∂s∂t c−∂u∂t b−[∂t b, c]h0⊕h1 −[b,∂t c]h0⊕h1 (35)

=∂s
(
∂ua+[a, c]h0⊕h1 +dy− y

)−[∂t b, c]h0⊕h1

−∂u
(
∂sa+[a,b]h0⊕h1 +dz− z

)−[b,∂t c]h0⊕h1

=[∂sa, c]h0⊕h1 −[∂t b, c]h0⊕h1 +[a,∂sc]h0⊕h1 +∂s(dy− y)

−[∂ua,b]h0⊕h1 −[b,∂t c]h0⊕h1 −[a,∂ub]h0⊕h1 −∂u(dz− z)

=[c,dz− z]h0⊕h1 −[b,dy− y]h0⊕h1 +[a,∂sc−∂ub−[b, c]h0⊕h1 ]h0⊕h1

+∂s(dy− y)−∂u(dz− z). (36)

Meanwhile, we have

[c,dz− z]h0⊕h1 =[c+�c,dz− z]h0⊕h1

=dl2(c, z)− l2(c, z), (37)

[b,dy− y]h0⊕h1 =[b+�b,dy− y]h0⊕h1

=dl2(b, y)− l2(b, y), (38)

By (37), (38), (36) and (14), we obtain that

∂t
(
∂sc−∂ub−[b, c]h0⊕h1 −dx+ x

)=[a,∂sc−∂ub−[b, c]h0⊕h1 −dx+ x]h0⊕h1 .

(39)

Since we have
(
∂sc−∂ub−[b, c]h0⊕h1 −dx+ x

)|t=0=0,

by the uniqueness of solutions of ordinary differential equations, (39) implies (34).
Since b(1, s,u)= c(1, s,u)=0, we have

∂s�c(1, s,u)−∂u�b(1, s,u)=[�b(1, s,u),�c(1, s,u)]h1 .

By the initial value condition a(t,1,u)=a(t,1,0), for any u, since ā=a, we have
∂uā(t,1,u)=0. By (33) and c(t,1,u)=0, we have

∂t c(t,1,u)=[a(t,1,u), c(t,1,u)]h0⊕h1 .

Since c(0,1,u)= 0, it follows that c(t,1,u)= 0, which implies that �c(t,1,u)= 0
and thus �c(1,1,u)=0. Therefore, �b(1, s,0) and �b(1, s,1) are homotopic.

Morita equivalence are defined for n-groupoids in an arbitrary category with a
certain Grothendieck pretopology in [30]. We adapt this notation to our situation:
a morphism F :C→C ′ of Lie 2-group is a hypercover and denoted by F :C ∼−→C ′,
if F0 :C0→C ′0 is a surjective submersion, and the natural map

C1→C ′1×C ′0×C ′0 C0×C0
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is an isomorphism. Moreover, C and C ′ are Morita equivalent, if there is another
Lie 2-group C ′′ such that there are hypercovers C

∼←−C ′′ ∼−→C ′. A generalized mor-
phism between Lie 2-groups is a span of morphisms C

∼←−C ′′ −→C ′.
With the above preparations, we have

THEOREM 2.15. There is a Lie 2-group Morita equivalence given by a morphism
(	0,	1,	2= id):

P2h/∼ 	1−→ H0 � H1⏐
⏐
�
⏐
⏐
�

⏐
⏐
�
⏐
⏐
�

P1h
	0−→ H0,

(40)

where 	0(a(t))= [a(t)], which is the equivalence class of the path a(t) and 	1 is
given by (26).

Remark 2.16. tHERE is an integration obstruction proved in [14], that is, the quo-
tient P2h/∼ might not be representable as a Banach manifold unless a certain
obstruction class vanishes. In this theorem, we show directly (Proposition 2.18)
that τ2(

∫
h) is always representable.

We prove it by several steps.

LEMMA 2.17. The above morphism (	0,	1,	2) is a 2-group morphism.

Proof. Obviously, (	1,	0) respects the source and target maps. It is not hard
to see that (	1,	0) is a morphism with respect to the vertical multiplication. In

fact, for • •
a0

��

a1

�� ��
, • •

a1

��

a2

�� ��
∈ P2h, assume that �b, �b
 are the cor-

responding solutions of (15), respectively. By definition, we have

	1( • •
a1

��

a2

�� ��
) ·v 	1( • •

a0

��

a1

�� ��
)= ([a0], [�b
(1, s)] · [�b(1, s)]).

On the other hand, it is straightforward to see that �b
 � �b is the solution

of (15) for the bigon • •

a0



 a1��

a2

��
��

��
. Therefore, we have 	1( • •

a0



 a1��

a2

��
��

��
) =
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([a0], [�b
(1, s)��b(1, s)]), which implies that

	1( • •

a0



 a1��

a2

��
��

��
)=	1( • •

a1

��

a2

�� ��
) ·v 	1( • •

a0

��

a1

�� ��
).

Next we prove that (	1,	0) is also a morphism with respect to the horizontal
multiplication. By (6), we have

	1( • •
a0

��

a1

�� ��
) ·h 	1( • •

a†
0

��

a†
1

�� ��
)

= ([a0], [�b(1, s)]) ·h ([a†
0], [�b†(1, s)])

=
(
[a0�a†

0], [�b(1, s)] ·�[a0]
([�b†(1, s)])

)
,

where � is given by (20), which integrates the action of h0 on h1.

On the other hand, by Lemma 2.13 and Lemma 2.12, we have

	1( • •
a0

��

a1

�� ��
•

a†
0

��

a†
1

�� ��
)=

(
[a0�a†

0], [�b‡(2, s)]
)

=
(
[a0�a†

0], [�b(1, s)�w(1, s)]
)

=
(
[a0�a†

0], [�b(1, s)] ·�[a0]
([�b†(1, s)])

)
,

which implies that

	1( • •
a0

��

a1

�� ��
•

a†
0

��

a†
1

�� ��
)=	1( • •

a0

��

a1

�� ��
) ·h 	1( • •

a†
0

��

a†
1

�� ��
),

i.e., 	1 is a morphism with respect to the horizontal multiplication.
Finally, since the right-hand side of (40) is a strict 2-group and (	1,	0) pre-

serves the horizontal multiplication strictly, condition (7) reduces to

	1(aa3,a2,a1)=
([(a3�a2)�a1],1H1

)
.

This holds obviously because aa3,a2,a1 being a reparametrization between (a3 �
a2)�a1 and a3� (a2�a1) must be a homotopy by [9, Lemma 1.5]. Similarly, con-
dition (8) holds.

It is clear that 	0 sends any smooth path in Ph to a smooth path in H0. More-
over, for a smooth family of homotopies (parametrized by u) Au = au(t, s)dt +
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bu(t, s)ds, the solution �bu(t, s) of (15) depends smoothly on u. Thus, both �0

and �1 are smooth. �

PROPOSITION 2.18. The natural map

� : P2h/∼→H0×H1×H0×H0 P1h× P1h,

[(a,b, z)] �→ ([a(−,0)], [�b],a(−,0),a(−,1)
)

is an isomorphism.

We first remark that P1h= Ph0 and H0 is a quotient of Ph, thus 	0 : P1h→H0 is
a surjective submersion of Banach manifolds. Thus this proposition will automat-
ically imply that P2h/∼ is representable and hence τ2(

∫
h) is a Lie 2-group. The

morphism we demonstrate in last lemma will further be a Lie 2-group morphism.
Now we prove this lemma by constructing an inverse morphism. We notice that

the Lie group H1= P0h1/∼. Given an element
(
h0, h1,a0,a1

)
on the left hand side,

we take a representative �b(s)∈ P0h1 of h1, then there are a(t, s), b̃(t, s) satisfying
h0-homotopy equation (16) and the boundary conditions as in Lemma 2.10. We
extend �b(s) to a morphism �b(t, s) : [0,1]×2→h1 such that

�b(1, s)=�b(s), �b(0, s)=0, ∂t |t=0�b(t, s)=0,

∂t |t=1�b(t, s)= l2(a(1, s),�(s)). (41)

Such extension always exists. For example, we take

�b(t, s)=α(t)l2(a(1, s),�b(s))+β(t)�b(s), (42)

with α(0)=α(1)=β(0)=α′(0)=β ′(0)=β ′(1)=0, and α′(1)=β(1)=1. We take

z(t, s) := l2(a(t, s),�b(t, s))−∂t�b(t, s), b := b̃−d�b.

Then

∂t b−∂sa− l2(a,b)−dz=0, z(0, s)= z(1, s)=0, b(1, s)=b(0, s)=�b(0, s)=0,

by construction. Thus we may define a map

ζ :H0×H1×H0×H0 P1h× P1h→ P2h/∼,
([a0], [�b],a0,a1

) �→ [(a,b, z)].

LEMMA 2.19. The map ζ is well defined.

Proof. If we take another representative �b1 ∈ P0h1 which is equivalent to �b
in P0h1 via �b(s,u) and �c(s,u), that is

∂s�c−∂u�b=[�b,�c]h1 , �c(0,u)=�c(1,u)=�b(0,u)=�b(1,u)=0,

(43)
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and a1 ∼ d(�b)� a0 via a(t, s), b̃(t, s) and a1 ∼ d(�b1)� a0 via a1(t, s), b̃1(t, s).
Since π2(H0)=0, there is no higher obstruction between h0-homotopies from being
homotopic, so (a(t, s), b̃(t, s)) and (a1(t, s), b̃1(t, s)) must be homotopic via a cer-
tain homotopy

a(t, s,u), b̃(t, s,u), c̃(t, s,u) ∈h0.

with boundary conditions

a(t, s,0)=a(t, s), a(t, s,1)=a1(t, s),

b̃(t, s,0)= b̃(t, s), b̃(t, s,1)= b̃1(t, s), b̃(0, s,u)=0, b̃(1, s,u)=d(�b(s,u)),

c̃(0, s,u)=0, c̃(1, s,u)=d(�c(s,u)), c̃(t,0,u)=0, c̃(t,1,u)=0.

Now we repeat the construction of z(t, s) for each u, and we obtain z(t, s,u)

and b(t, s,u) with correct boundary conditions satisfying (11). We need to show
that (a,b, z)|u=0∼ (a,b, z)|u=1.

Firstly, by a similar method, we construct y(t, s,u) and c(t, s,u) with correct
boundary conditions2 and satisfying (12). Then ∂ub̃−∂s c̃= [̃c, b̃]h0 implies that if
we take

x(t, s,u)= l2(�b, c)+ l2(b,�c)+∂u�b−∂s�c+ l2(d(�b),�c),

we will have (13). The boundary condition x(0, s,u)=0 is obvious. The boundary
condition x(1, s,u)= 0 is implied by (43). Implied by the boundary condition in
(43), the extension �b(t, s,u) from �b(s,u) according to (42) for each u satisfies
�b(t, s,u)|s=0,1=0. This implies the boundary condition x |s=0,1=0.

By straightforward computations, we have

∂uz−∂s y+∂t x

=∂u
(
l2(a,�b)−∂t�b

)−∂s
(
l2(a,�c)−∂t�c

)

+∂t
(
l2(�b, c)+ l2(b,�c)+∂u�b−∂s�c+ l2(d(�b),�c)

)

= l2(∂ua,�b)+ l2(a,∂u�b)−∂u∂t�b− l2(∂sa,�c)− l2(a,∂s�c)+∂s∂t�c

+l2(∂t�b, c)+ l2(�b,∂t c)+ l2(∂t b,�c)+ l2(b,∂t�c)+∂t∂u�b−∂t∂s�c

+l2(∂t d(�b),�c)+ l2(d(�b),∂t�c)

= l2(∂ua−∂t c,�b)+ l2(a,∂u�b−∂s�c)+ l2(∂t b−∂sa,�c)

+l2(∂t�b, c)+ l2(b,∂t�c)+ l2(∂t d(�b),�c)+ l2(d(�b),∂t�c)

=−l2(l2(a, c)+dy,�b)+ l2(a,∂u�b−∂s�c)+ l2(l2(a,b)+dz,�c)

+l2(∂t�b, c)+ l2(b,∂t�c)+ l2(∂t d(�b),�c)+ l2(d(�b),∂t�c),

2This amounts to extend �c(s,u) to �c(t, s,u) such that �c(t, s,u)|s=0,1 = 0, �c(0, s,u) =
0, �c(1, s,u)=�c(s,u). The boundary condition is a bit different than the case of �b, however
with more information �c|s=0,1(s,u)=0 that �c has than �b, the same construction of extension
works.
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and

l2(a, x)− l2(b, y)+ l2(c, z)

= l2(a, l2(�b, c)+ l2(b,�c)+∂u�b−∂s�c+ l2(d(�b),�c))

−l2(b, l2(a,�c)−∂t�c)+ l2(c, l2(a,�b)−∂t�b).

Since l2 satisfies the Jacobi identity, the condition (14) is equivalent to

−l2(dy,�b)+ l2(dz,�c)+ l2(∂t d(�b),�c)+ l2(d(�b),∂t�c)

−l2(a, l2(d�b,�c))=0.

Compute directly, the left-hand side is equal to

−l2(dl2(a,�c),�b)+ l2(d∂t�c,�b)+ l2(dl2(a,�b),�c)− l2(d∂t�b,�c)

+l2(∂t d(�b),�c)+ l2(d(�b),∂t�c)− l2(a, l2(d�b,�c)),

which is equal to zero since l2 satisfies the Jacobi identity. Thus, (14) holds. There-
fore, we have (a,b, z)|u=0∼ (a,b, z)|u=1 through (a,b, c, x, y, z).

It is obvious that � ◦ ζ = id. To finish the proof of Theorem 2.15, we still need
to show that ζ ◦� = id. Given an element (a,b, z)∈ P2h, since � does not depend
on the choice of representative, we choose a convenient reparametrization such
that z(t, s)|s=0,1=0. Thus the solution �b in Lemma 2.10 also has �b(t, s)|s=0,1=
0. Following � then ζ , we first restrict �b on t =1, then extend it again to all t
by (42), thus we might end up with another �b1, with the same boundary value,
that is when either t or s is 0 or 1. Thus Theorem 2.15 follows immediately from
the following lemma:

LEMMA 2.20. The map ζ does not depend on the choice of extension with the same
boundary value.

Proof. We suppose that there are two such extensions �b(t, s) and �b1(t, s). We
connect them by �bu := u�b+ (1− u)�b1. Then the corresponding b := b̃− d�b
and b1 := b̃−d�b1 are connected by bu := b̃−�bu ; the corresponding z and z1 are
connected by zu := l2(a,�bu)− ∂t�bu . Now we take a(t, s,u)= a(t, s), b(t, s,u)=
bu, c=0, y=0, x=∂u�bu , then it is obviously to see that (11), (12) hold. Equation
(13) is implied by the fact that b̃ does not depend on u. Equation (14) is implied
by the fact that a does not depend on u. The boundary condition of x is implied
by that of �b and �b1. Thus (a,b, z)|u=0 is homotopic to (a,b, z)|u=1.

3. Application on Integration of (Non-Strict) Lie 2-Algebra Morphisms

Lie’s theorem II tells us that Lie algebra morphisms can integrate to Lie group
morphisms. As pointed out in [11, Def. 4.2.8] (and also easy to see), an L∞-
morphism between L∞-algebras f : g→ h induces a natural map

∫
f : ∫ g→ ∫

h
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of Kan complex. Thus applying in the case of Lie 2-algebras, an L∞-morphism
between Lie 2-algebras (also called non-strict Lie 2-algebra morphisms) f : g→ h

can integrate to a 2-group morphism τ2(
∫

f ) : τ2(
∫

g)→ τ2(
∫

h). Combining with
our result, we have

COROLLARY 3.1. A non-strict Lie 2-algebra morphism f :g→h between two strict
Lie 2-algebras integrates to a generalized Lie 2-group morphism

(G0 � G1⇒G0)
∼←− τ2

(∫
g

)
τ2(

∫
f )−−−−→ τ2

(∫
h

)
∼−→ (H0 � H1⇒H0),

between the corresponding (simply-connected) Lie group crossed modules.

Remark 3.2. It is fairly easy to integrate a strict morphism which consists of Lie
algebra morphisms fi : gi→ hi preserving all crossed module structures. One only
needs to integrate fi individually as a Lie algebra morphism.

The integration of nonstrict morphism is also addressed in the context of but-
terflies [20]. Butterflies between crossed modules are believed3 to be equivalent to
generalized morphisms between strict Lie 2-groups.

Finally, we call the generalized morphism above an integration of f based on
the fact that τ2(

∫
f ) should be considered as a canonical integration. However we

do not justify the concept of integration by the inverse procedure, namely differ-
entiation.

Now we concentrate on Lie 2-algebra morphisms from a Lie algebra to a strict
Lie 2-algebra. We will see that several interesting objects can be described by such
a morphism, including 2-term representations up to homotopy of Lie algebras,
non-abelian extensions of Lie algebras and up to homotopy Poisson actions.

We first recall an explicit formulation of L∞-morphism that we will mention in
the examples:

DEFINITION 3.3. An L∞-morphism from a Lie algebra g to a strict Lie 2-alge-

bra L1
d−→ L0 consists of linear maps μ :g−→ L0 and ν :g∧g−→ L1 such that the

obstruction of μ being a Lie algebra morphism is given by

μ[X,Y ]g− l2(μ(X),μ(Y ))=dν(X,Y ), (44)

and ν satisfies the following condition:

l2(μ(X), ν(Y, Z))+ c.p.=ν([X,Y ]g, Z)+ c.p., (45)

where c.p. means cyclic permutations.

3Private conversation to Noohi.



INTEGRATION OF LIE 2-ALGEBRAS AND THEIR MORPHISMS 241

• 2-term representations up to homotopy of Lie algebras

Associated to any k-term complex of vector spaces V, there is a natural DGLA
(differential graded Lie algebra) gl(V) [16,23], which plays the same role as gl(V )

for a vector space V in the classical case. An L∞-module [16] of an L∞-algebra L
is given by an L∞-morphism from L to gl(V). Associated to any 2-term complex
of vector spaces V , by truncation of gl(V), we obtain a strict Lie 2-algebra, which
we denote by End(V). The degree 0 part End0(V) is given by

End0(V)={(A0, A1)∈End(V0, V0)⊕End(V1, V1)|A0 ◦d=d ◦ A1},

and the degree 1 part End1(V) is Hom(V0, V1). The Lie bracket of End(V) is
given by the commutator and the differential is induced by d. It turns out that for
2-term L∞-modules of a Lie algebra g, it is enough to look at morphisms to the
strict Lie 2-algebra End(V):

PROPOSITION 3.4. [16] A 2-term L∞-module of a Lie algebra g is given by an
L∞-morphism from g to End(V).

A 2-term L∞-module of a Lie algebra g is the same as a representation up to
homotopy of the Lie algebra g on a 2-term complex of vector spaces, see [2,22] for
more details. Thus, Corollary 3.1 can be applied to integrate L∞-modules V of a
Lie algebra g to that of a Lie group G. This is studied further in [23], where the
semidirect product g � V is also integrated. It then has application in integrating
omni-Lie algebras and Courant algebroids [24].

• Non-abelian extensions of Lie algebras

It is well known that abelian extensions of a Lie algebra g give rise to a rep-
resentation of g and the equivalence classes of extensions are in one-to-one cor-
respondence with the second cohomology. In the following, we will see that a
non-abelian extension of a Lie algebra g, given by a short exact sequence of Lie
algebras

0−→ k
i−→ ĝ

p−→g−→0 (46)

can be realized as an L∞-morphism from Lie algebra g to the strict Lie 2-algebra

k
ad−→Der(k) (see Example 2.4).
By choosing a splitting of p, we can always assume that ĝ= g⊕ k as vector

spaces. Then the Lie bracket [·, ·]ĝ decomposes as below,

[X1+ k1, X2+ k2]ĝ=[X1, X2]ĝ+[X1, k2]ĝ−[X2, k1]ĝ+[k1, k2]k,
∀X1+ k1, X2+ k2 ∈g⊕ k.
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Since p is a morphism of Lie algebras, there is a linear map ν : g∧ g−→ k such
that

[X1, X2]ĝ=[X1, X2]g+ν(X1, X2).

On the other hand, it is straightforward to see that for any X ∈ g, the action
[X, ·]ĝ : k−→ k is a derivation with respect to the Lie bracket [·, ·]k. Thus [X, k]ĝ=
μ(X)(k) for some linear map μ :g−→Der(k). One should be very careful here: μ

is not a Lie algebra morphism!
We rewrite [·, ·]ĝ as

[X1+ k1, X2+ k2]ĝ=[X1, X2]g+μ(X1)(k2)−μ(X2)(k1)+[k1, k2]k+ν(X1, X2).

(47)

The Jacobi identity of [·, ·]ĝ gives,

μ([X,Y ]g)(k)−[μ(X),μ(Y )]C (k)=[ν(X,Y ), k]k, (48)

μ(X)(ν(Y, Z))+ c.p.=ν([X,Y ]g, Z)+ c.p.. (49)

Moreover, a different splitting p′ will give a homotopic morphism. We conclude by
the following proposition, which we do not claim any originality (see [1,15,6,26]
for various similar and more general discussions).

PROPOSITION 3.5. Given two Lie algebras g and k, there is a one-to-one corre-
spondence between the equivalence classes of non-abelian extensions of g by k and

homotopy classes of L∞-morphisms from g to the strict Lie 2-algebra k
ad−→Der(k).

Thus apply our result on integration may provide another method to integrate
non-abelian extensions of Lie algebras.

• Up to homotopy Poisson actions

DEFINITION 3.6. [21] An up to homotopy Poisson action of a Lie algebra g on
a Poisson manifold (M, π) is an extension gM of g by the Lie algebra C∞(M)

(with the Poisson bracket {·, ·}π used as the Lie bracket), such that for every X ∈
gM , the map C∞(M)−→C∞(M), f �−→[X, f ] is a derivation (i.e. a vector field).

Let Lπ
M denote the DGLA of multi-vector fields �(∧T M)[1], with Schouten

bracket [·, ·]S and differential [π, ·].
As stated in [21], another equivalent formulation of up to homotopy Poisson

action is an L∞ morphism from g to the DGLA Lπ
M . We further simplify this

statement. Denote by X(M)π the set of vector fields preserving the Poisson struc-
ture π , i.e.,

X(M)π ={X ∈X(M), [X, π ]=0}.
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By truncation, we obtain a strict Lie 2-algebra C∞(M)
[π,·]−→X(M)π , of which the

degree 1 part is C∞(M), the degree 0 part is X(M)π and the differential is [π, ·].
The extension gM of g by C∞(M) is totally determined by a linear map μ :g−→
X(M)π and a linear map ν :g∧g−→C∞(M), which satisfy the following equation:

μ([X,Y ]g)−[μ(X),μ(Y )]S=[π, ν(X,Y )]S,

μ(X)(ν(Y, Z))+ c.p.=ν([X,Y ]g, Z)+ c.p..

Thus, we have

PROPOSITION 3.7. There is a one-to-one correspondence between up to homoto-
py Poisson actions of Lie algebra g on Poisson manifolds (M, π) and L∞-morphisms

(μ, ν) from g to the strict Lie 2-algebra C∞(M)
[π,·]−→X(M)π .

Remark 3.8. We only need to use the fact π2(H0)= 0 in the construction of g in
the last section. Without this condition, we will still have a morphism even though
not a Morita morphism. The space of X(M)π is infinite dimensional and does not
admit a Banach structure. However, there is also certain infinite-dimensional cal-
culus available in this case (see for example [28, App.A]). Thus our result cannot
be applied directly, however, certain modification may be applied.
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