30 research outputs found
High Rates of Hepatitis C Virus Reinfection and Spontaneous Clearance of Reinfection in People Who Inject Drugs: A Prospective Cohort Study
Hepatitis C virus reinfection and spontaneous clearance of reinfection were examined in a highly characterisedcohort of 188 people who inject drugs over a five-year period. Nine confirmed reinfections and 17 possiblereinfections were identified (confirmed reinfections were those genetically distinct from the previous infection andpossible reinfections were used to define instances where genetic differences between infections could not beassessed due to lack of availability of hepatitis C virus sequence data). The incidence of confirmed reinfection was28.8 per 100 person-years (PY), 95%CI: 15.0-55.4; the combined incidence of confirmed and possible reinfectionwas 24.6 per 100 PY (95%CI: 16.8-36.1). The hazard of hepatitis C reinfection was approximately double that ofprimary hepatitis C infection; it did not reach statistical significance in confirmed reinfections alone (hazard ratio [HR]:2.45, 95%CI: 0.87-6.86, p=0.089), but did in confirmed and possible hepatitis C reinfections combined (HR: 1.93,95%CI: 1.01-3.69, p=0.047) and after adjustment for the number of recent injecting partners and duration of injecting.In multivariable analysis, shorter duration of injection (HR: 0.91; 95%CI: 0.83-0.98; p=0.019) and multiple recentinjecting partners (HR: 3.12; 95%CI: 1.08-9.00, p=0.035) were independent predictors of possible and confirmedreinfection. Time to spontaneous clearance was shorter in confirmed reinfection (HR: 5.34, 95%CI: 1.67-17.03,p=0.005) and confirmed and possible reinfection (HR: 3.10, 95%CI: 1.10-8.76, p-value=0.033) than primary infection.Nonetheless, 50% of confirmed reinfections and 41% of confirmed or possible reinfections did not spontaneouslyclear.Conclusions: Hepatitis C reinfection and spontaneous clearance of hepatitis C reinfection were observed at highrates, suggesting partial acquired natural immunity to hepatitis C virus. Public health campaigns about the risks ofhepatitis C reinfection are required
Temperature sensitivity of soil enzymes along an elevation gradient in the Peruvian Andes
Soil enzymes are catalysts of organic matter depolymerisation, which is of critical importance for ecosystem carbon (C) cycling. Better understanding of the sensitivity of enzymes to temperature will enable improved predictions of climate change impacts on soil C stocks. These impacts may be especially large in tropical montane forests, which contain large amounts of soil C. We determined the temperature sensitivity (Q 10) of a range of hydrolytic and oxidative enzymes involved in organic matter cycling from soils along a 1900 m elevation gradient (a 10 °C mean annual temperature gradient) of tropical montane forest in the Peruvian Andes. We investigated whether the activity (V max) of selected enzymes: (i) exhibited a Q 10 that varied with elevation and/or soil properties; and (ii) varied among enzymes and according to the complexity of the target substrate for C-degrading enzymes. The Q 10 of V max for β-glucosidase and β-xylanase increased with increasing elevation and declining mean annual temperature. For all other enzymes, including cellobiohydrolase, N-acetyl β-glucosaminidase and phosphomonoesterase, the Q 10 of V max did not vary linearly with elevation. Hydrolytic enzymes that degrade more complex C compounds had a greater Q 10 of V max, but this pattern did not apply to oxidative enzymes because phenol oxidase had the lowest Q 10 value of all enzymes studied here. Our findings suggest that regional differences in the temperature sensitivities of different enzyme classes may influence the terrestrial C cycle under future climate warming
Wide-field multifiber spectroscopy with FLAIR II
The 1.2-m United Kingdom Schmidt Telescope has operated a wide- field spectroscopy service for a number of years. A new common- user system has recently been completed. The instrument, known as FLAIR II, offers many more fiber channels than its predecessors, together with wider spectral coverage and faster turn-round of target fields. This paper describes FLAIR II in its present-day form, highlighting the most innovative aspects of its design, and giving a critical evaluation of its performance. Its impact has been significant, and large data-sets are being accumulated for a variety of object-classes
Native plants and nitrogen in agricultural landscapes of New Zealand
Background and Aims:
The Canterbury Plains of the South Island, New Zealand are being converted to intensive dairy farming; native vegetation now occupies < 0.5 % of the area. Reintroducing native species into nutrient-rich systems could provide economic, environmental and ecological benefits. However, native species are adapted to low nitrogen (N) environments. We aimed to determine the growth and N-uptake response of selected native species to elevated soil N loadings and elucidate the effect of these plants on the N speciation in soil.
Methods:
Plant growth, N-uptake, and N speciation in rhizosphere soil of selected native species and Lolium perenne (ryegrass, as reference) were measured in greenhouse and field trials.
Results:
At restoration sites, several native species had similar foliar N concentrations to ryegrass. Deciduous (and N-fixing) species had highest concentrations. There was significant inter-species variation in soil mineral N concentrations in native plant rhizospheres, differing substantially to the ryegrass root-zone. Pot trials revealed that native species tolerated high N-loadings, although there was a negligible growth response. Among the native plants, monocot species assimilated most N. However, total N assimilation by ryegrass would exceed native species at field productivity rates.
Conclusions:
Selected native plant species could contribute to the sustainable management of N in intensive agricultural landscapes.Full Tex