45 research outputs found

    Improving the confidence of Machine Translation quality estimates

    Get PDF
    We investigate the problem of estimating the quality of the output of machine translation systems at the sentence level when reference translations are not available. The focus is on automatically identifying a threshold to map a continuous predicted score into “good ” / “bad ” categories for filtering out bad-quality cases in a translation post-edition task. We use the theory of Inductive Confidence Machines (ICM) to identify this threshold according to a confidence level that is expected for a given task. Experiments show that this approach gives improved estimates when compared to those based on classification or regression algorithms without ICM.

    Fine-Water-Mist Multiple-Orientation-Discharge Fire Extinguisher

    Get PDF
    A fine-water-mist fire-suppression device has been designed so that it can be discharged uniformly in any orientation via a high-pressure gas propellant. Standard fire extinguishers used while slightly tilted or on their side will not discharge all of their contents. Thanks to the new design, this extinguisher can be used in multiple environments such as aboard low-gravity spacecraft, airplanes, and aboard vehicles that may become overturned prior to or during a fire emergency. Research in recent years has shown that fine water mist can be an effective alternative to Halons now banned from manufacture. Currently, NASA uses carbon dioxide for fire suppression on the International Space Station (ISS) and Halon chemical extinguishers on the space shuttle. While each of these agents is effective, they have drawbacks. The toxicity of carbon dioxide requires that the crew don breathing apparatus when the extinguishers are deployed on the ISS, and Halon use in future spacecraft has been eliminated because of international protocols on substances that destroy atmospheric ozone. A major advantage to the new system on occupied spacecraft is that the discharged system is locally rechargeable. Since the only fluids used are water and nitrogen, the system can be recharged from stores of both carried aboard the ISS or spacecraft. The only support requirement would be a pump to fill the water and a compressor to pressurize the nitrogen propellant gas. This system uses a gaseous agent to pressurize the storage container as well as to assist in the generation of the fine water mist. The portable fire extinguisher hardware works like a standard fire extinguisher with a single storage container for the agents (water and nitrogen), a control valve assembly for manual actuation, and a discharge nozzle. The design implemented in the proof-of-concept experiment successfully extinguished both open fires and fires in baffled enclosures

    Modeling multi effect distillation powered by CSP in TRNSYS

    Get PDF
    This work presents the results of using a new tool to simulate the cogeneration of water and electricity with Concentrating Solar Power (CSP) and Forward Feed Multi-Effect-Desalination (FF-MED) plants, by adding a new functionality to the System Advisor Model (SAM) developed by the US National Renewable Energy Laboratory (NREL). The controlling strategy of the MED model is presented in detail, and a case study application is shown. This study compares the results obtained with a CSP plant operating in San Diego, CA, with four different cooling systems: an MED/Seawater Cooling Circuit (SWCC), dry cooling, wet cooling, and a SWCC standalone. The results show that the usage of an MED/SWCC system in cogeneration with a CSP plant can be feasible and has the potential to be economically interesting

    熱に耐える複合材料

    No full text

    Cermet material could aid the development of future power plants

    No full text
    corecore