17,290 research outputs found
Hall current effects in dynamic magnetic reconnection solutions
The impact of Hall current contributions on flow driven planar magnetic merging solutions is discussed. The Hall current is important if the dimensionless Hall parameter (or normalized ion skin depth) satisfies cH>η where η is the inverse Lundquist number for the plasma. A dynamic analysis of the problem shows, however, that the Hall current initially manifests itself, not by modifying the planar reconnection field, but by inducing a non-reconnecting perpendicular "separator" component in the magnetic field. Only if the stronger condition c2/H > η is satisfied can Hall currents be expected to affect the planar merging. These analytic predictions are then tested by performing a series of numerical experiments in periodic geometry, using the full system of planar magnetohydrodynamic (MHD) equations. The numerical results confirm that the nature of the merging changes dramatically when the Hall coupling satisfies c2/H > η. In line with the analytic treatment of sheared reconnection, the coupling provided by the Hall term leads to the emergence of multiple current layers that can enhance the global Ohmic dissipation at the expense of the reconnection rate. However, the details of the dissipation depend critically on the symmetries of the simulation, and when the merging is "head-on" (i.e., comprises fourfold symmetry) the reconnection rate can be enhanced
Scalable solid-state quantum processor using subradiant two-atom states
We propose a realization of a scalable, high-performance quantum processor
whose qubits are represented by the ground and subradiant states of effective
dimers formed by pairs of two-level systems coupled by resonant dipole-dipole
interaction. The dimers are implanted in low-temperature solid host material at
controllable nanoscale separations. The two-qubit entanglement either relies on
the coherent excitation exchange between the dimers or is mediated by external
laser fields.Comment: 4 pages, 3 figure
Bose-Einstein condensates with attractive 1/r interaction: The case of self-trapping
Amplifying on a proposal by O'Dell et al. for the realization of
Bose-Einstein condensates of neutral atoms with attractive interaction,
we point out that the instance of self-trapping of the condensate, without
external trap potential, is physically best understood by introducing
appropriate "atomic" units. This reveals a remarkable scaling property: the
physics of the condensate depends only on the two parameters and
, where is the particle number, the scattering length,
the "Bohr" radius and the trap frequency in atomic units. We
calculate accurate numerical results for self-trapping wave functions and
potentials, for energies, sizes and peak densities, and compare with previous
variational results. As a novel feature we point out the existence of a second
solution of the extended Gross-Pitaevskii equation for negative scattering
lengths, with and without trapping potential, which is born together with the
ground state in a tangent bifurcation. This indicates the existence of an
unstable collectively excited state of the condensate for negative scattering
lengths.Comment: 7 pages, 7 figures, to appear in Phys. Rev.
Quantum channels in nonlinear optical processes
Quantum electrodynamics furnishes a new type of representation for the characterisation of nonlinear optical processes. The treatment elicits the detailed role and interplay of specific quantum channels, information that is not afforded by other methods. Following an illustrative application to the case of Rayleigh scattering, the method is applied to second and third harmonic generation. Derivations are given of parameters that quantify the various quantum channels and their interferences; the results are illustrated graphically. With given examples, it is shown in some systems that optical nonlinearity owes its origin to an isolated channel, or a small group of channels. © 2009 World Scientific Publishing Company
A molecular theory for two-photon and three-photon fluorescence polarization
In the analysis of molecular structure and local order in heterogeneous samples, multiphoton excitation of fluorescence affords chemically specific information and high-resolution imaging. This report presents the results of an investigation that secures a detailed theoretical representation of the fluorescence polarization produced by one-, two-, and three-photon excitations, with orientational averaging procedures being deployed to deliver the fully disordered limits. The equations determining multiphoton fluorescence response prove to be expressible in a relatively simple, generic form, and graphs exhibit the functional form of the multiphoton fluorescence polarization. Amongst other features, the results lead to the identification of a condition under which the fluorescence produced through the concerted absorption of any number of photons becomes completely unpolarized. It is also shown that the angular variation of fluorescence intensities is reliable indicator of orientational disorder
Thermal noise of folding mirrors
Current gravitational wave detectors rely on the use of Michelson interferometers. One crucial limitation of their sensitivity is the thermal noise of their optical components. Thus, for example fluctuational deformations of the mirror surface are probed by a laser beam being reflected from the mirrors at normal incidence. Thermal noise models are well evolved for that case but mainly restricted to single reflections. In this work we present the effect of two consecutive reflections under a non-normal incidence onto mirror thermal noise. This situation is inherent to detectors using a geometrical folding scheme such as GEO\,600. We revise in detail the conventional direct noise analysis scheme to the situation of non-normal incidence allowing for a modified weighting funtion of mirror fluctuations. An application of these results to the GEO\,600 folding mirror for Brownian, thermoelastic and thermorefractive noise yields an increase of displacement noise amplitude by 20\% for most noise processes. The amplitude of thermoelastic substrate noise is increased by a factor 4 due to the modified weighting function. Thus the consideration of the correct weighting scheme can drastically alter the noise predictions and demands special care in any thermal noise design process
Influence of the state of light on the optically induced interparticle interaction
A general expression for the energy of interparticle interaction induced by an arbitrary mode of light is determined using quantum electrodynamics, and it is shown that the Casimir-Polder potential is included within this quantum result. Equations are also derived for the corresponding coupling induced by multimode number states of light, and the dependence of the pair energy on the Poynting vector and polarization state is determined. Attention is then focused on the interactions between particles trapped in counterpropagating coherent beams, both with and without interference, and it is shown that the results afford insights into the multiparticle structures that can be optically fabricated with counterpropagating input. Brief consideration is also given to the effect of squeezing the optical coherent state. Extending previous studies of optical binding in Laguerre-Gaussian beams, results are given for the case of particles trapped at radially different locations within the beam structure. Finally, consideration is given to interparticle interactions induced by broadband light, and it is shown how the length of optically fabricated particle chains can be controlled by the use of wavelength filters
- …