159 research outputs found

    Multicenter, double-blind, placebo-controlled trial of seviprotimut-L polyvalent melanoma vaccine in patients with post-resection melanoma at high risk of recurrence

    Get PDF
    BACKGROUND: Most patients with advanced melanomas relapse after checkpoint blockade therapy. Thus, immunotherapies are needed that can be applied safely early, in the adjuvant setting. Seviprotimut-L is a vaccine containing human melanoma antigens, plus alum. To assess the efficacy of seviprotimut-L, the Melanoma Antigen Vaccine Immunotherapy Study (MAVIS) was initiated as a three-part multicenter, double-blind, placebo-controlled phase III trial. Results from part B1 are reported here. METHODS: Patients with AJCC V.7 stage IIB-III cutaneous melanoma after resection were randomized 2:1, with stage stratification (IIB/C, IIIA, IIIB/C), to seviprotimut-L 40 mcg or placebo. Recurrence-free survival (RFS) was the primary endpoint. For an hypothesized HR of 0.625, one-sided alpha of 0.10, and power 80%, target enrollment was 325 patients. RESULTS: For randomized patients (n=347), arms were well-balanced, and treatment-emergent adverse events were similar for seviprotimut-L and placebo. For the primary intent-to-treat endpoint of RFS, the estimated HR was 0.881 (95% CI: 0.629 to 1.233), with stratified logrank p=0.46. However, estimated HRs were not uniform over the stage randomized strata, with HRs (95% CIs) for stages IIB/IIC, IIIA, IIIB/IIIC of 0.67 (95% CI: 0.37 to 1.19), 0.72 (95% CI: 0.35 to 1.50), and 1.19 (95% CI: 0.72 to 1.97), respectively. In the stage IIB/IIC stratum, the effect on RFS was greatest for patients \u3c60 years old (HR=0.324 (95% CI: 0.121 to 0.864)) and those with ulcerated primary melanomas (HR=0.493 (95% CI: 0.255 to 0.952)). CONCLUSIONS: Seviprotimut-L is very well tolerated. Exploratory efficacy model estimation supports further study in stage IIB/IIC patients, especially younger patients and those with ulcerated melanomas. TRIAL REGISTRATION NUMBER: NCT01546571

    Synergistic inhibition of human melanoma proliferation by combination treatment with B-Raf inhibitor BAY43-9006 and mTOR inhibitor Rapamycin

    Get PDF
    BACKGROUND: Targeted inhibition of protein kinases is now acknowledged as an effective approach for cancer therapy. However, targeted therapies probably have limited success because cancer cells have alternate pathways for survival and proliferation thereby avoiding inhibition. We tested the hypothesis that combination of targeted agents would be more effective than single agents in arresting melanoma cell proliferation. METHODS: We evaluated whether BAY43-9006, an inhibitor of the B-Raf kinase, and rapamycin, an inhibitor of the mTOR kinase, would inhibit serum-stimulated proliferation of human melanoma cell lines, either alone or in combination. Proliferation was measured by quantitating melanoma cell numbers with a luciferase for ATP. Phosphorylation of proteins downstream of targeted kinase(s) was assayed by immunoblots. Statistical significance was determined with the Student-T test. Isobologram analysis was performed to distinguish additive versus synergistic effects of combinations of drugs. RESULTS: Serum-stimulated proliferation of multiple human melanoma cell lines was inhibited by BAY43-9006 and by rapamycin. Melanoma cells containing the B-Raf mutation V599E were more sensitive than cells with wild-type B-raf to 10 nM doses of both BAY43-9006 and rapamycin. Regardless of B-Raf mutational status, the combination of low dose rapamycin and BAY43-9006 synergistically inhibited melanoma cell proliferation. As expected, rapamycin inhibited the phosphorylation of mTOR substrates, p70S6K and 4EBP1, and BAY43-9006 inhibited phosphorylation of ERK, which is dependent on B-Raf activity. We also observed unexpected rapamycin inhibition of the phosphorylation of ERK, as well as BAY43-9006 inhibition of the phosphorylation of mTOR substrates, p70S6K and 4EBP1. CONCLUSION: There was synergistic inhibition of melanoma cell proliferation by the combination of rapamycin and BAY 43-9006, and unexpected inhibition of two signaling pathways by agents thought to target only one of those pathways. These results indicate that combinations of inhibitors of mTOR and of the B-raf signaling pathways may be more effective as a treatment for melanoma than use of either agent alone

    Dynamic changes in cellular infiltrates with repeated cutaneous vaccination: a histologic and immunophenotypic analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Melanoma vaccines have not been optimized. Adjuvants are added to activate dendritic cells (DCs) and to induce a favourable immunologic milieu, however, little is known about their cellular and molecular effects in human skin. We hypothesized that a vaccine in incomplete Freund's adjuvant (IFA) would increase dermal Th1 and Tc1-lymphocytes and mature DCs, but that repeated vaccination may increase regulatory cells.</p> <p>Methods</p> <p>During and after 6 weekly immunizations with a multipeptide vaccine, immunization sites were biopsied at weeks 0, 1, 3, 7, or 12. In 36 participants, we enumerated DCs and lymphocyte subsets by immunohistochemistry and characterized their location within skin compartments.</p> <p>Results</p> <p>Mature DCs aggregated with lymphocytes around superficial vessels, however, immature DCs were randomly distributed. Over time, there was no change in mature DCs. Increases in T and B-cells were noted. Th2 cells outnumbered Th1 lymphocytes after 1 vaccine 6.6:1. Eosinophils and FoxP3<sup>+ </sup>cells accumulated, especially after 3 vaccinations, the former cell population most abundantly in deeper layers.</p> <p>Conclusions</p> <p>A multipeptide/IFA vaccine may induce a Th2-dominant microenvironment, which is reversed with repeat vaccination. However, repeat vaccination may increase FoxP3<sup>+</sup>T-cells and eosinophils. These data suggest multiple opportunities to optimize vaccine regimens and potential endpoints for monitoring the effects of new adjuvants.</p> <p>Trail Registration</p> <p>ClinicalTrials.gov Identifier: NCT00705640</p

    Complete Spontaneous Regression of Pulmonary Metastatic Melanoma

    Full text link
    Complete spontaneous regression of melanoma metastatic to the lungs is a rare event. objective . To report a case of biopsy-proven melanoma metastatic to the lung with complete spontaneous regression. methods . Multidisciplinary case report. results . A 35-year-old white female was diagnosed with metastatic melanoma to the lung. A pleural biopsy confirmed the diagnosis. Partial spontaneous regression was noted by a staging computed tomography scan prior to enrollment in an investiga-tional protocol. Complete spontaneous regression occurred over 5 months without any form of conventional or alternative therapy, and the patient remains disease-free 3 years after diagnosis. conclusions . Our case represents the seventh case of complete spontaneous regression of melanoma metastatic to the lung, and the only case with histologic confirmation of both the primary and pulmonary metastatic lesions. The patient was pregnant twice between the time of her initial diagnosis of primary melanoma and pulmonary metastatic disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75559/1/j.1524-4725.1998.tb04275.x.pd

    Overexpression of Collagenase 1 (MMP-1) Is Mediated by the ERK Pathway in Invasive Melanoma Cells: ROLE OFBRAFMUTATION AND FIBROBLAST GROWTH FACTOR SIGNALING

    Get PDF
    Melanoma progresses as a multistep process where the thickness of the lesion and depth of tumor invasion are the best prognostic indicators of clinical outcome. Degradation of the interstitial collagens in the extracellular matrix is an integral component of tumor invasion and metastasis, and much of this degradation is mediated by collagenase-1 (MMP-1), a member of the matrix metalloproteinase (MMP) family. MMP-1 levels increase during melanoma progression where they are associated with shorter disease-free survival. The Ras/Raf/MEK/ERK mitogen-activated protein kinase (MAPK) pathway is a major regulator of melanoma cell proliferation. Recently, BRAF has been identified as a common site of activating mutations, and, although many reports focus on its growth-promoting effects, this pathway has also been implicated in progression toward metastatic disease. In this study, we describe four melanoma cell lines that produce high levels of MMP-1 constitutively. In each cell line the Ras/Raf/MEK/ERK pathway is constitutively active and is the dominant pathway driving the production of MMP-1. Activation of this pathway arises due to either an activating mutation in BRAF (three cell lines) or autocrine fibroblast growth factor signaling (one cell line). Furthermore, blocking MEK/ERK activity inhibits melanoma cell proliferation and abrogates collagen degradation, thus decreasing their metastatic potential. Importantly, this inhibition of invasive behavior can occur in the absence of any detectable changes in cell proliferation and survival. Thus, constitutive activation of this MAPK pathway not only promotes the increased proliferation of melanoma cells but is also important for the acquisition of an invasive phenotype

    Proliferating CD8+ T Cell Infiltrates Are Associated with Improved Survival in Glioblastoma

    Get PDF
    Background: tumor-infiltrating lymphocytes are prognostic in many human cancers. However, the prognostic value of lymphocytes infiltrating glioblastoma (GBM), and roles in tumor control or progression are unclear. We hypothesized that B and T cell density, and markers of their activity, proliferation, differentiation, or function, would have favorable prognostic significance for patients with GBM. Methods: initial resection specimens from 77 patients with IDH1/2 wild type GBM who received standard-of-care treatment were evaluated with multiplex immunofluorescence histology (mIFH), for the distribution, density, differentiation, and proliferation of T cells and B cells, as well as for the presence of tertiary lymphoid structures (TLS), and IFNγ expression. Immune infiltrates were evaluated for associations with overall survival (OS) by univariate and multivariate Cox proportional hazards modeling. Results: in univariate analyses, improved OS was associated with high densities of proliferating (Ki67(+)) CD8(+) cells (HR 0.36, p = 0.001) and CD20(+) cells (HR 0.51, p = 0.008), as well as CD8(+)Tbet(+) cells (HR 0.46, p = 0.004), and RORγt(+) cells (HR 0.56, p = 0.04). Conversely, IFNγ intensity was associated with diminished OS (HR 0.59, p = 0.036). In multivariable analyses, adjusting for clinical variables, including age, resection extent, Karnofsky Performance Status (KPS), and MGMT methylation status, improved OS was associated with high densities of proliferating (Ki67(+)) CD8(+) cells (HR 0.15, p < 0.001), and higher ratios of CD8(+) cells to CD4(+) cells (HR 0.31, p = 0.005). Diminished OS was associated with increases in patient age (HR 1.21, p = 0.005) and higher mean intensities of IFNγ (HR 2.13, p = 0.027). Conclusions: intratumoral densities of proliferating CD8 T cells and higher CD8/CD4 ratios are independent predictors of OS in patients with GBM. Paradoxically, higher mean intensities of IFNγ in the tumors were associated with shorter OS. These findings suggest that survival may be enhanced by increasing proliferation of tumor-reactive CD8(+) T cells and that approaches may be needed to promote CD8(+) T cell dominance in GBM, and to interfere with the immunoregulatory effects of IFNγ in the tumor microenvironment

    Melanoma NOS1 expression promotes dysfunctional IFN signaling.

    Get PDF
    In multiple forms of cancer, constitutive activation of type I IFN signaling is a critical consequence of immune surveillance against cancer; however, PBMCs isolated from cancer patients exhibit depressed STAT1 phosphorylation in response to IFN-α, suggesting IFN signaling dysfunction. Here, we demonstrated in a coculture system that melanoma cells differentially impairs the IFN-α response in PBMCs and that the inhibitory potential of a particular melanoma cell correlates with NOS1 expression. Comparison of gene transcription and array comparative genomic hybridization (aCGH) between melanoma cells from different patients indicated that suppression of IFN-α signaling correlates with an amplification of the NOS1 locus within segment 12q22-24. Evaluation of NOS1 levels in melanomas and IFN responsiveness of purified PBMCs from patients indicated a negative correlation between NOS1 expression in melanomas and the responsiveness of PBMCs to IFN-α. Furthermore, in an explorative study, NOS1 expression in melanoma metastases was negatively associated with patient response to adoptive T cell therapy. This study provides a link between cancer cell phenotype and IFN signal dysfunction in circulating immune cells

    Shipping blood to a central laboratory in multicenter clinical trials: effect of ambient temperature on specimen temperature, and effects of temperature on mononuclear cell yield, viability and immunologic function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical trials of immunologic therapies provide opportunities to study the cellular and molecular effects of those therapies and may permit identification of biomarkers of response. When the trials are performed at multiple centers, transport and storage of clinical specimens become important variables that may affect lymphocyte viability and function in blood and tissue specimens. The effect of temperature during storage and shipment of peripheral blood on subsequent processing, recovery, and function of lymphocytes is understudied and represents the focus of this study.</p> <p>Methods</p> <p>Peripheral blood samples (n = 285) from patients enrolled in 2 clinical trials of a melanoma vaccine were shipped from clinical centers 250 or 1100 miles to a central laboratory at the sponsoring institution. The yield of peripheral blood mononuclear cells (PBMC) collected before and after cryostorage was correlated with temperatures encountered during shipment. Also, to simulate shipping of whole blood, heparinized blood from healthy donors was collected and stored at 15°C, 22°C, 30°C, or 40°C, for varied intervals before isolation of PBMC. Specimen integrity was assessed by measures of yield, recovery, viability, and function of isolated lymphocytes. Several packaging systems were also evaluated during simulated shipping for the ability to maintain the internal temperature in adverse temperatures over time.</p> <p>Results</p> <p>Blood specimen containers experienced temperatures during shipment ranging from -1 to 35°C. Exposure to temperatures above room temperature (22°C) resulted in greater yields of PBMC. Reduced cell recovery following cryo-preservation as well as decreased viability and immune function were observed in specimens exposed to 15°C or 40°C for greater than 8 hours when compared to storage at 22°C. There was a trend toward improved preservation of blood specimen integrity stored at 30°C prior to processing for all time points tested. Internal temperatures of blood shipping containers were maintained longer in an acceptable range when warm packs were included.</p> <p>Conclusions</p> <p>Blood packages shipped overnight by commercial carrier may encounter extreme seasonal temperatures. Therefore, considerations in the design of shipping containers should include protecting against extreme ambient temperature deviations and maintaining specimen temperature above 22°C or preferably near 30°C.</p

    Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab.

    Get PDF
    The mechanisms by which immune checkpoint blockade modulates tumor evolution during therapy are unclear. We assessed genomic changes in tumors from 68 patients with advanced melanoma, who progressed on ipilimumab or were ipilimumab-naive, before and after nivolumab initiation (CA209-038 study). Tumors were analyzed by whole-exome, transcriptome, and/or T cell receptor (TCR) sequencing. In responding patients, mutation and neoantigen load were reduced from baseline, and analysis of intratumoral heterogeneity during therapy demonstrated differential clonal evolution within tumors and putative selection against neoantigenic mutations on-therapy. Transcriptome analyses before and during nivolumab therapy revealed increases in distinct immune cell subsets, activation of specific transcriptional networks, and upregulation of immune checkpoint genes that were more pronounced in patients with response. Temporal changes in intratumoral TCR repertoire revealed expansion of T cell clones in the setting of neoantigen loss. Comprehensive genomic profiling data in this study provide insight into nivolumab\u27s mechanism of action
    corecore