119 research outputs found
Reactive oxygen and nitrogen species induce protein and DNA modifications driving arthrofibrosis following total knee arthroplasty
BACKGROUND: Arthrofibrosis, occurring in 3%-4% of patients following total knee arthroplasty (TKA), is a challenging condition for which there is no defined cause. The hypothesis for this study was that disregulated production of reactive oxygen species (ROS) and nitrogen species (RNS) mediates matrix protein and DNA modifications, which result in excessive fibroblastic proliferation. RESULTS: We found increased numbers of macrophages and lymphocytes, along with elevated amounts of myeloperoxidase (MPO) in arthrofibrotic tissues when compared to control tissues. MPO expression, an enzyme that generates ROS/RNS, is usually limited to neutrophils and some macrophages, but was found by immunohistochemistry to be expressed in both macrophages and fibroblasts in arthrofibrotic tissue. As direct measurement of ROS/RNS is not feasible, products including DNA hydroxylation (8-OHdG), and protein nitrosylation (nitrotyrosine) were measured by immunohistochemistry. Quantification of the staining showed that 8-OHdg was significantly increased in arthrofibrotic tissue. There was also a direct correlation between the intensity of inflammation and ROS/RNS to the amount of heterotopic ossification (HO). In order to investigate the aberrant expression of MPO, a real-time oxidative stress polymerase chain reaction array was performed on fibroblasts isolated from arthrofibrotic and control tissues. The results of this array confirmed the upregulation of MPO expression in arthrofibrotic fibroblasts and highlighted the downregulated expression of the antioxidants, superoxide dismutase1 and microsomal glutathione S-transferase 3, as well as the significant increase in thioredoxin reductase, a known promoter of cell proliferation, and polynucleotide kinase 3\u27-phosphatase, a key enzyme in the base excision repair pathway for oxidative DNA damage. CONCLUSION: Based on our current findings, we suggest that ROS/RNS initiate and sustain the arthrofibrotic response driving aggressive fibroblast proliferation and subsequent HO
Low rate of infection control in enterococcal periprosthetic joint infections.
BACKGROUND: Enterococcal periprosthetic joint infections (PJIs) are rare after joint arthroplasty. These cases are usually reported in series of PJIs caused by other pathogens. Because few studies have focused only on enterococcal PJIs, management and control of infection of these cases have not yet been well defined.
QUESTIONS/PURPOSES: We asked (1) what is the proportion of enterococcal PJI in our institutes; and (2) what is the rate of infection control in these cases?
METHODS: We respectively identified 22 and 14 joints with monomicrobial and polymicrobial PJI, respectively, caused by enterococcus. The diagnosis of PJI was made based on the presence of sinus tract or two positive intraoperative cultures. PJI was also considered in the presence of one positive intraoperative culture and abnormal serology. We determined the proportion of enterococcal PJI and management and control of infection in these cases. Minimum followup was 1.5 years (mean, 3.2 years).
RESULTS: The proportion of monomicrobial enterococcal PJI was 2.3% (22 of 955 cases of PJI). Mean number of surgeries was two (range, 1-4). Initial irrigation and débridement was performed in 10 joints and eight patients needed reoperation. Seven of the 16 joints were initially managed using two-stage exchange arthroplasty and did not need further operation. Six patients had a definitive resection arthroplasty. Salvage surgeries (fusion and above-knee amputation) were performed in three cases (8%). The infection was ultimately controlled in 32 of the 36 patients.
CONCLUSIONS: Management of enterococcal PJI is challenging and multiple operations may need to be performed to control the infection.
LEVEL OF EVIDENCE: Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence
High Failure Rates of Concomitant Periprosthetic Joint Infection and Extensor Mechanism Disruption
Background
Patients presenting with both chronic periprosthetic joint infection (PJI) and extensor mechanism disruption (EMD) pose a significant challenge. As there is little in the literature regarding outcomes of patients with concomitant PJI and EMD, we performed a multicenter study to evaluate the outcomes.
Methods
Sixty patients with concomitant diagnoses of PJI and EMD were evaluated from 5 institutions. Patient demographics, presentation type, surgical management, and outcomes including recurrent infections, final surgery, and ambulatory status were documented.
Results
Fifty-three of 60 patients had an attempted extensor mechanism reconstruction/repair (EMR) of which 12 (23%) were successful, averaging 3.5 (range, 2-7) intervening surgeries. Forty-one patients (77%) were considered failures with recurrence of infection as most common failure (80%); 26 ended in fusion, 10 in above knee amputation, 3 with chronic resection arthroplasty, and 2 with chronic spacers/EMD. Seven patients had no attempt at EMR but proceeded directly to fusion (n = 6) or amputation (n = 1). There was no statistical difference between groups that had success or failure of EMR in age, American Society of Anesthesiologists Physical Status Classification System, or body mass index.
Conclusion
Our study demonstrates that concomitant EMD and PJI is a dreaded combination with poor outcomes regardless of treatment. Eradication of infection and reconstruction of the extensor mechanism often require numerous surgeries and despite great effort often end in failure. Consideration of early fusion or amputation may be preferable in some patients to avoid the morbidity and mortality of repeated surgeries
The relationship of the factor V Leiden mutation or the deletion-deletion polymorphism of the angiotensin converting enzyme to postoperative thromboembolic events following total joint arthroplasty
BACKGROUND: Although all patients undergoing total joint arthroplasty are subjected to similar risk factors that predispose to thromboembolism, only a subset of patients develop this complication. The objective of this study was to determine whether a specific genetic profile is associated with a higher risk of developing a postoperative thromboembolic complication. Specifically, we examined if the Factor V Leiden (FVL) mutation or the deletion polymorphism of the angiotensin-converting enzyme (ACE) gene increased a patient's risk for postoperative thromboembolic events. The FVL mutation has been associated with an increased risk of idiopathic thromboembolism and the deletion polymorphism of the ACE gene has been associated with increased vascular tone, attenuated fibrinolysis and increased platelet aggregation. METHODS: The presence of these genetic profiles was determined for 38 patients who had a postoperative symptomatic pulmonary embolus or proximal deep venous thrombosis and 241 control patients without thrombosis using molecular biological techniques. RESULTS: The Factor V Leiden mutation was present in none of the 38 experimental patients and in 3% or 8 of the 241 controls (p = 0.26). Similarly there was no difference detected in the distribution of polymorphisms for the ACE gene with the deletion-deletion genotype present in 36% or 13 of the 38 experimental patients and in 31% or 74 of the 241 controls (p = 0.32). CONCLUSIONS: Our results suggest that neither of these potentially hypercoaguable states are associated with an increased risk of symptomatic thromboembolic events following total hip or knee arthroplasty in patients receiving pharmacological thromboprophylaxis
Evidence for a Chandrasekhar-mass explosion in the Ca-strong 1991bg-like type la supernova 2016hnk
Aims. We present a comprehensive dataset of optical and near-infrared photometry and spectroscopy of type Ia supernova (SN) 2016hnk, combined with integral field spectroscopy (IFS) of its host galaxy, MCG-01-06-070, and nearby environment. Our goal with this complete dataset is to understand the nature of this peculiar object. Methods. Properties of the SN local environment are characterized by means of single stellar population synthesis applied to IFS observations taken two years after the SN exploded. We performed detailed analyses of SN photometric data by studying its peculiar light and color curves. SN 2016hnk spectra were compared to other 1991bg-like SNe Ia, 2002es-like SNe Ia, and Ca-rich transients. In addition, we used abundance stratification modeling to identify the various spectral features in the early phase spectral sequence and also compared the dataset to a modified non-LTE model previously produced for the sublumnious SN 1999by. Results. SN 2016hnk is consistent with being a subluminous (MB = -16.7 mag, sBV=0.43 ± 0.03), highly reddened object. The IFS of its host galaxy reveals both a significant amount of dust at the SN location, residual star formation, and a high proportion of old stellar populations in the local environment compared to other locations in the galaxy, which favors an old progenitor for SN 2016hnk. Inspection of a nebular spectrum obtained one year after maximum contains two narrow emission lines attributed to the forbidden [Ca ii] λλ7291,7324 doublet with a Doppler shift of 700 km s-1. Based on various observational diagnostics, we argue that the progenitor of SN 2016hnk was likely a near Chandrasekhar-mass (MCh) carbon-oxygen white dwarf that produced 0.108 M of 56Ni. Our modeling suggests that the narrow [Ca ii] features observed in the nebular spectrum are associated with 48Ca from electron capture during the explosion, which is expected to occur only in white dwarfs that explode near or at the MCh limit
SN 2019muj-a well-observed Type Iax supernova that bridges the luminosity gap of the class
We present early-time (t < +50 d) observations of SN 2019muj (=ASASSN-19tr), one of the best-observed members of the peculiar SN Iax class. Ultraviolet and optical photometric and optical and near-infrared spectroscopic follow-up started from similar to 5 d before maximum light [t(max)(B) on 58707.8 MJD] and covers the photospheric phase. The early observations allow us to estimate the physical properties of the ejecta and characterize the possible divergence from a uniform chemical abundance structure. The estimated bolometric light-curve peaks at 1.05 x 10(42) erg s(-1) and indicates that only 0.031 M-circle dot of Ni-56 was produced, making SN 2019muj a moderate luminosity object in the Iax class with peak absolute magnitude of M-V = -16.4 mag. The estimated date of explosion is t(0) = 58698.2 MJD and implies a short rise time of t(rise) = 9.6 d in B band. We fit of the spectroscopic data by synthetic spectra, calculated via the radiative transfer code TARDIS. Adopting the partially stratified abundance template based on brighter SNe Iax provides a good match with SN 2019muj. However, without earlier spectra, the need for stratification cannot be stated in most of the elements, except carbon, which is allowed to appear in the outer layers only. SN 2019muj provides a unique opportunity to link extremely low-luminosity SNe Iax to well-studied, brighter SNe Iax
Evidence for a Chandrasekhar-mass explosion in the Ca-strong 1991bg-like type Ia supernova 2016hnk
Aims. We present a comprehensive dataset of optical and near-infrared photometry and spectroscopy of type Ia supernova (SN) 2016hnk, combined with integral field spectroscopy (IFS) of its host galaxy, MCG -01-06-070, and nearby environment. Our goal with this complete dataset is to understand the nature of this peculiar object.
Methods. Properties of the SN local environment are characterized by means of single stellar population synthesis applied to IFS observations taken two years after the SN exploded. We performed detailed analyses of SN photometric data by studying its peculiar light and color curves. SN 2016hnk spectra were compared to other 1991bg-like SNe Ia, 2002es-like SNe Ia, and Ca-rich transients. In addition, we used abundance stratification modeling to identify the various spectral features in the early phase spectral sequence and also compared the dataset to a modified non-LTE model previously produced for the sublumnious SN 1999by.
Results. SN 2016hnk is consistent with being a subluminous (MB = −16.7 mag, sBV=0.43 ± 0.03), highly reddened object. The IFS of its host galaxy reveals both a significant amount of dust at the SN location, residual star formation, and a high proportion of old stellar populations in the local environment compared to other locations in the galaxy, which favors an old progenitor for SN 2016hnk. Inspection of a nebular spectrum obtained one year after maximum contains two narrow emission lines attributed to the forbidden [Ca II] λλ7291,7324 doublet with a Doppler shift of 700 km s−1. Based on various observational diagnostics, we argue that the progenitor of SN 2016hnk was likely a near Chandrasekhar-mass (MCh) carbon-oxygen white dwarf that produced 0.108 M⊙ of 56Ni. Our modeling suggests that the narrow [Ca II] features observed in the nebular spectrum are associated with 48Ca from electron capture during the explosion, which is expected to occur only in white dwarfs that explode near or at the MCh limit
Evidence for a Chandrasekhar-mass explosion in the Ca-strong 1991bg-like type la supernova 2016hnk
Aims. We present a comprehensive dataset of optical and near-infrared photometry and spectroscopy of type Ia supernova (SN) 2016hnk, combined with integral field spectroscopy (IFS) of its host galaxy, MCG -01-06-070, and nearby environment. Our goal with this complete dataset is to understand the nature of this peculiar object.Methods. Properties of the SN local environment are characterized by means of single stellar population synthesis applied to IFS observations taken two years after the SN exploded. We performed detailed analyses of SN photometric data by studying its peculiar light and color curves. SN 2016hnk spectra were compared to other 1991bg-like SNe Ia, 2002es-like SNe Ia, and Ca-rich transients. In addition, we used abundance stratification modeling to identify the various spectral features in the early phase spectral sequence and also compared the dataset to a modified non-LTE model previously produced for the sublumnious SN 1999by.Results. SN 2016hnk is consistent with being a subluminous (M-B = -16.7 mag, S-BV =0.43 +/- 0.03), highly reddened object. The IFS of its host galaxy reveals both a significant amount of dust at the SN location, residual star formation, and a high proportion of old stellar populations in the local environment compared to other locations in the galaxy, which favors an old progenitor for SN 2016hnk. Inspection of a nebular spectrum obtained one year after maximum contains two narrow emission lines attributed to the forbidden [Ca II] lambda lambda 7291,7324 doublet with a Doppler shift of 700 km s(-1). Based on various observational diagnostics, we argue that the progenitor of SN 2016hnk was likely a near Chandrasekhar-mass (M-Ch) carbon-oxygen white dwarf that produced 0.108 M-circle dot of Ni-56. Our modeling suggests that the narrow [Ca II] features observed in the nebular spectrum are associated with Ca-48 from electron capture during the explosion, which is expected to occur only in white dwarfs that explode near or at the M-Ch limit.</p
Less than 1% of Core-Collapse Supernovae in the local universe occur in elliptical galaxies
We present observations of three Core-collapse supernovae (CCSNe) in elliptical hosts, detected by the Zwicky Transient Facility Bright Transient Survey (BTS). SN 2019ape is a SN Ic that exploded in the main body of a typical elliptical galaxy. Its properties are consistent with an explosion of a regular SN Ic progenitor. A secondary g-band light curve peak could indicate interaction of the ejecta with circumstellar material (CSM). An H-emitting source at the explosion site suggests a residual local star formation origin. SN 2018fsh and SN 2020uik are SNe II which exploded in the outskirts of elliptical galaxies. SN 2020uik shows typical spectra for SNe II, while SN 2018fsh shows a boxy nebular H profile, a signature of CSM interaction. We combine these 3 SNe with 7 events from the literature and analyze their hosts as a sample. We present multi-wavelength photometry of the hosts, and compare this to archival photometry of all BTS hosts. Using the spectroscopically complete BTS we conclude that of all CCSNe occur in elliptical galaxies. We derive star-formation rates and stellar masses for the host-galaxies and compare them to the properties of other SN hosts. We show that CCSNe in ellipticals have larger physical separations from their hosts compared to SNe Ia in elliptical galaxies, and discuss implications for star-forming activity in elliptical galaxies.</p
- …