49 research outputs found

    Characteristics of HIV-1 Discordant Couples Enrolled in a Trial of HSV-2 Suppression to Reduce HIV-1 Transmission: The Partners Study

    Get PDF
    Background: The Partners HSV-2/HIV-1 Transmission Study (Partners Study) is a phase III, placebo-controlled trial of daily acyclovir for genital herpes (HSV-2) suppression among HIV-1/HSV-2 co-infected persons to reduce HIV-1 transmission to their HIV-1 susceptible partners, which requires recruitment of HIV-1 serodiscordant heterosexual couples. We describe the baseline characteristics of this cohort. Methods: HIV-1 serodiscordant heterosexual couples, in which the HIV-1 infected partner was HSV-2 seropositive, had a CD4 count ≥250 cells/mcL and was not on antiretroviral therapy, were enrolled at 14 sites in East and Southern Africa. Demographic, behavioral, clinical and laboratory characteristics were assessed. Results: Of the 3408 HIV-1 serodiscordant couples enrolled, 67% of the HIV-1 infected partners were women. Couples had cohabitated for a median of 5 years (range 2–9) with 28% reporting unprotected sex in the month prior to enrollment. Among HIV-1 susceptible participants, 86% of women and 59% of men were HSV-2 seropositive. Other laboratory-diagnosed sexually transmitted infections were uncommon (500 relative to <350, respectively, p<0.001). Conclusions: The Partners Study successfully enrolled a cohort of 3408 heterosexual HIV-1 serodiscordant couples in Africa at high risk for HIV-1 transmission. Follow-up of this cohort will evaluate the efficacy of acyclovir for HSV-2 suppression in preventing HIV-1 transmission and provide insights into biological and behavioral factors determining heterosexual HIV-1 transmission. Trial Registration ClinicalTrials.gov NCT0019451

    Recurrent Signature Patterns in HIV-1 B Clade Envelope Glycoproteins Associated with either Early or Chronic Infections

    Get PDF
    Here we have identified HIV-1 B clade Envelope (Env) amino acid signatures from early in infection that may be favored at transmission, as well as patterns of recurrent mutation in chronic infection that may reflect common pathways of immune evasion. To accomplish this, we compared thousands of sequences derived by single genome amplification from several hundred individuals that were sampled either early in infection or were chronically infected. Samples were divided at the outset into hypothesis-forming and validation sets, and we used phylogenetically corrected statistical strategies to identify signatures, systematically scanning all of Env. Signatures included single amino acids, glycosylation motifs, and multi-site patterns based on functional or structural groupings of amino acids. We identified signatures near the CCR5 co-receptor-binding region, near the CD4 binding site, and in the signal peptide and cytoplasmic domain, which may influence Env expression and processing. Two signatures patterns associated with transmission were particularly interesting. The first was the most statistically robust signature, located in position 12 in the signal peptide. The second was the loss of an N-linked glycosylation site at positions 413–415; the presence of this site has been recently found to be associated with escape from potent and broad neutralizing antibodies, consistent with enabling a common pathway for immune escape during chronic infection. Its recurrent loss in early infection suggests it may impact fitness at the time of transmission or during early viral expansion. The signature patterns we identified implicate Env expression levels in selection at viral transmission or in early expansion, and suggest that immune evasion patterns that recur in many individuals during chronic infection when antibodies are present can be selected against when the infection is being established prior to the adaptive immune response

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Multigroup, Adaptively Randomized Trials Are Advantageous for Comparing Coronavirus Disease 2019 (COVID-19) Interventions

    No full text
    We propose platform trials with outcome-adaptive randomization to efficiently select the most effective coronavirus disease 2019 (COVID-19) treatments. The global spread of severe acute respiratory syndrome coronavirus 2 infection is alarming in its geographic scope and in the number of associated deaths. There are currently no treatments proven to decrease mortality from COVID-19 further than what can be achieved through supportive care. Thus far, the choice of therapeutics has been limited to existing, repurposed medications. Given that some of the medications are perceived to have low toxicity, many have been embraced without evidence. Although remdesivir was recently found to shorten time to symptom resolution, evidence for survival benefit is inconclusiv

    Neutralizing antibody correlates of sequence specific dengue disease in a tetravalent dengue vaccine efficacy trial in Asia

    No full text
    In the CYD14 trial of the CYD-TDV dengue vaccine in 2-14 year-olds, neutralizing antibody (nAb) titers to the vaccine-insert dengue strains correlated inversely with symptomatic, virologically-confirmed dengue (VCD). Also, vaccine efficacy against VCD was higher against dengue prM/E amino acid sequences closer to the vaccine inserts. We integrated the nAb and sequence data types by assessing nAb titers as a correlate of sequence-specific VCD separately in the vaccine arm and in the placebo arm. In both vaccine and placebo recipients the correlation of nAb titer with sequence-specific VCD was stronger for dengue nAb contact site sequences closer to the vaccine (p = 0.005 and p = 0.012, respectively). The risk of VCD in vaccine (placebo) recipients was 6.7- (1.80)-fold lower at the 90th vs 10th percentile of nAb for viruses perfectly matched to CYD-TDV, compared to 2.1- (0.78)-fold lower at the 90th vs 10th percentile for viruses with five amino acid mismatches. The evidence for a stronger sequence-distance dependent correlate of risk for the vaccine arm indicates departure from the Prentice criteria for a valid sequence-distance specific surrogate endpoint and suggests that the nAb marker may affect dengue risk differently depending on whether nAbs arise from infection or also by vaccination. However, when restricting to baseline-seropositive 9-14 year-olds, the correlation pattern became more similar between the vaccine and placebo arms, supporting nAb titers as an approximate surrogate endpoint in this population. No sequence-specific nAb titer correlates of VCD were seen in baseline-seronegative participants. Integrated immune response/pathogen sequence data correlates analyses could help increase knowledge of correlates of risk and surrogate endpoints for other vaccines against genetically diverse pathogens. Trial registration: EU Clinical Trials Register 2014-001708-24; registration date 2014-05-26

    Analysis of HIV Using a High Resolution Melting (HRM) Diversity Assay: Automation of HRM Data Analysis Enhances the Utility of the Assay for Analysis of HIV Incidence

    Get PDF
    <div><h3>Background</h3><p>HIV diversity may be a useful biomarker for discriminating between recent and non-recent HIV infection. The high resolution melting (HRM) diversity assay was developed to quantify HIV diversity in viral populations without sequencing. In this assay, HIV diversity is expressed as a single numeric HRM score that represents the width of a melting peak. HRM scores are highly associated with diversity measures obtained with next generation sequencing. In this report, a software package, the HRM Diversity Assay Analysis Tool (DivMelt), was developed to automate calculation of HRM scores from melting curve data.</p> <h3>Methods</h3><p>DivMelt uses computational algorithms to calculate HRM scores by identifying the start (T1) and end (T2) melting temperatures for a DNA sample and subtracting them (T2–T1 = HRM score). DivMelt contains many user-supplied analysis parameters to allow analyses to be tailored to different contexts. DivMelt analysis options were optimized to discriminate between recent and non-recent HIV infection and to maximize HRM score reproducibility. HRM scores calculated using DivMelt were compared to HRM scores obtained using a manual method that is based on visual inspection of DNA melting curves.</p> <h3>Results</h3><p>HRM scores generated with DivMelt agreed with manually generated HRM scores obtained from the same DNA melting data. Optimal parameters for discriminating between recent and non-recent HIV infection were identified. DivMelt provided greater discrimination between recent and non-recent HIV infection than the manual method.</p> <h3>Conclusion</h3><p>DivMelt provides a rapid, accurate method of determining HRM scores from melting curve data, facilitating use of the HRM diversity assay for large-scale studies.</p> </div

    DivMelt Graphic User Interface (GUI).

    No full text
    <p>DivMelt displays various options when the package is opened. (A) The initial GUI window displays the “File Menu,” “Settings Menu,” and “Main Menu.” Sub-windows relating to file management may be opened from the “File Menu” window. These include (B) the “Input Options” window and (C) the “Output Options” window. From the “Settings Menu” window, additional options can be selected. These include (D) the “Plotting Options” window, (E) the “Analysis Options” window, and (F) the “Show Settings” window. The “Main Menu” is used to initiate analyses. Clicking “Run Analysis” opens the “Review Settings” window (similar to F). See the user manual for a description of the various tools accessible from the GUI. At the left of each row for items B–E, the “<i>i</i>” may be clicked to open a comment box that describes the function of the tool in question. These windows are shown as they display in Windows 7. Note that the windows will display slightly differently in other operating systems.</p

    Correlation between HRM scores calculated with the optimal DivMelt analysis protocols and HRM scores calculated using the manual method <sup>a</sup>.

    No full text
    a<p>Pearson’s correlation coefficient with manual HRM score. The region used to optimize each protocol is shown in the column on the left; the regions analyzed are shown in the headers for the six other columns.</p>b<p>Detailed region-specific analysis protocol descriptions are shown in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0051359#pone-0051359-t001" target="_blank">Table 1</a>.</p>c<p>HIV genome regions are described in the footnote of <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0051359#pone-0051359-t001" target="_blank">Table 1</a>.</p

    Percentage of samples excluded by the internal quality control for each of the optimal DivMelt analysis protocols<sup>a</sup>.

    No full text
    a<p>All values are reported as percentages. The region used to optimize each protocol is shown in the column on the left; the regions analyzed are shown in the headers for the six other columns.</p>b<p>Detailed region-specific analysis protocol descriptions are shown in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0051359#pone-0051359-t001" target="_blank">Table 1</a>.</p>c<p>HIV genome regions are described in the footnote of <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0051359#pone-0051359-t001" target="_blank">Table 1</a>.</p

    Methods for selection of T1 and T2 values.

    No full text
    <p>The slope of a line tangent to the melting peak is calculated for each point along the melting peak through the use of a sliding window (slope window). The user can define the width of this window. Each slope is compared with a user-defined Theta 1 value for selection of T1 and Theta 2 value for selection of T2. When the angle meets or exceeds Theta 1, T1 is identified. When the angle meets or exceeds Theta 2, T2 is identified.</p
    corecore