1,349 research outputs found

    Emission processes and dynamics of hot gases in astrophysics

    Get PDF
    A detailed model was developed for Kepler's supernova remnant (SNR). Observations of the SNR revealed a strong interaction with the surrounding circumstellar medium, which was studied through both analytical and numerical calculations. Effects were studied of electron thermal conduction on the structure of radiative interstellar shock waves. An explanation is sought for the observed line emission from metal rich ejecta in SNR, incorporating atomic data. Light echoes around SN 1987A was also studied. Analysis of infrared and scattered circumstellar light echoes was accomplished with early observations to set limits on the mass of circumstellar dust. Work was completed on the emission from heavy element gas ejected in the supernova explosion of massive stars. It was assumed that a radioactive energy source was present and calculated the detailed heating and ionization of the gas. The evolution was studied of SNR in the very high pressure environment of a starburst galaxy

    Investigation of aerothermodynamics and optical radiation in the AFE hypersonic flow field

    Get PDF
    Research for the radiation experiments on the Aeroassist Flight Experiment (AFE) was performed to obtain a data base for development of engineering requirements for aerobrakes. Due to funding restrictions, the necessary Aerobrake design data were obtained from ground based experiments, specifically arc-jet wind tunnels. Except for the instrument windows, final development of the AFE radiometers was completed. Window definition included several designs to be flight validated in arc-jets. This work was completed, and successful designs have evolved which will yield full scientific return from the flight experiment. The theoretical work includes final code development to describe the spacecraft environment to support instrument definition, optical radiation codes that operate at significantly improved speeds, and calculation of radiation forebody loads and effects on experiment objectives for varying AFE weights and trajectories. Furthermore, radiant flux vectors at the AFE base were predicted to be used for afterbody instrument definition. The Vacuum Ultraviolet Experiment for the Arc-Jet was completed, and arc-jet experiment conditions and experiment objectives were refined to incorporate the most current thinking. Ballistic range experiments were completed. Several shadowgraphs indicating corner turning angles and waviness structures were obtained, and the results were used to estimate the compression region location for the AFE flight. The waviness measured has helped to model the temporal variations of wake radiation for purposes of defining radiometers to measure the energy content of wake dynamics

    Planetary entry experiments

    Get PDF
    The final report summarizes the results from three research areas: (1) window design for the radiometric measurement of the forebody radiative heating experienced by atmospheric entry spaceraft; (2) survey of the current understanding of chemical species on selected solar system bodies and assess the importance of measurements with regard to vehicle environment and with regard to understanding of planetary atmospheres with emphasis on Venus, Mars, and Titan; and (3) measure and analyze the radiation (VUV to near-IR) from the shock heated gas cap of a blunt body in an Ames arc Jet wind-tunnel facility

    Venusian atmospheric equilibrium chemistry at the Pioneer Venus anomalous event altitude

    Get PDF
    No convincing explanation for the anomalous behavior of the Atmospheric Structure Experiment temperature sensors at approximately 13 km altitude has been found. It occurred on all of the widely-spaced probes, in a similar fashion. A preliminary effort has been made to determine atmospheric chemical species which might be present at 13 km. The purpose of this effort is to initiate suggestions of possible chemical interactions and to explore the effects of the presence of possible metal reactants including condensation. Equilibrium fractions of chemical species were calculated at a variety of conditions. Baseline calculations were made for the altitudes near 13 km. For comparison calculations were also made at 13 km but with the introduction of plausible metal atoms

    The Monongah Mines Disaster Relief Committee

    Get PDF

    Structural basis of the super- and hyper-relaxed states of myosin II

    Get PDF
    Super-relaxation is a state of muscle thick filaments in which ATP turnover by myosin is much slower than that of myosin II in solution. This inhibited state, in equilibrium with a faster (relaxed) state, is ubiquitous and thought to be fundamental to muscle function, acting as a mechanism for switching off energy-consuming myosin motors when they are not being used. The structural basis of super-relaxation is usually taken to be a motif formed by myosin in which the two heads interact with each other and with the proximal tail forming an interacting-heads motif, which switches the heads off. However, recent studies show that even isolated myosin heads can exhibit this slow rate. Here, we review the role of head interactions in creating the super-relaxed state and show how increased numbers of interactions in thick filaments underlie the high levels of super-relaxation found in intact muscle. We suggest how a third, even more inhibited, state of myosin (a hyper-relaxed state) seen in certain species results from additional interactions involving the heads. We speculate on the relationship between animal lifestyle and level of super-relaxation in different species and on the mechanism of formation of the super-relaxed state. We also review how super-relaxed thick filaments are activated and how the super-relaxed state is modulated in healthy and diseased muscles

    Altitude Limits for Rotating Vector Model Fitting of Pulsar Polarization

    Full text link
    Traditional pulsar polarization sweep analysis starts from the point dipole rotating vector model (RVM) approximation. If augmented by a measurement of the sweep phase shift, one obtains an estimate of the emission altitude (Blaskiewicz, Cordes, & Wasserman). However, a more realistic treatment of field line sweepback and finite altitude effects shows that this estimate breaks down at modest altitude ~ 0.1R_{LC}. Such radio emission altitudes turn out to be relevant to the young energetic and millisecond pulsars that dominate the \gamma-ray population. We quantify the breakdown height as a function of viewing geometry and provide simple fitting formulae that allow observers to correct RVM-based height estimates, preserving reasonable accuracy to R ~ 0.3R_{LC}. We discuss briefly other observables that can check and improve height estimates

    Structural behavior of circular holes in web elements of cold-formed steel flexural members subjected to web crippling for end-one-flange loading

    Get PDF
    I. INTRODUCTION A. GENERAL An environmental concern regarding the use of wood being an appropriate construction material has become a contemporary issue. The depletion of forests, caused not only by the building construction industry, but also by natural disasters such as forest fires, has raised many questions about the conservation of the environment. Trees are being replanted in an effort to make up for the loss, but trees take many years to mature. Therefore, in an attempt to improve the environment and the feasibility of building construction, alternative materials for residential construction are being investigated. One material that is being researched extensively is cold-formed steel. Cold-formed steel has many advantages over other building materials. The foremost advantage is its recyclability, which is an environmentally attractive advantage. Other advantages of cold-formed steel are that it has a very high weight-to-strength ratio, construction is fast and easy, it can be mass produced with consistent cross-sectional properties, it is termite proof and rotproof, it is economic in transportation and handling, and it is noncombustible. Cold-formed steel has been preferred in light-industrial construction for many years because it is cost competitive and because of the aforementioned advantages. The use of cold-formed steel members in building construction began around the 1850\u27s in the United States and Great Britain. Although cold-formed steel building construction began in the 1850\u27s, cold-formed steel was not widely used until around 1940. Since 1946 the use and the development of thin-walled cold-formed steel construction in the United States have been accelerated by the printing of the Specification for the Design of Cold-Formed Steel Structural Members of the American Iron and Steel Institute (AISI). Each subsequent edition incorporates investigation results which have improved the completeness and surety of the specification. For example, based on a study by Hetrakul and Yu (1978), the 1980 edition underwent expansive refinement in the design of beam webs subjected to web crippling and the combination of bending and web crippling. However, the web crippling provisions and combined bending and web crippling provisions of the 1980 and subsequently revised editions of the Specification pertain only to flexural members without web openings. Since 1990, the University of Missouri-Rolla has conducted a comprehensive study of the behavior of web elements of flexural members with web openings subjected to loads causing bending, shear, and web crippling, and combinations thereof. The current AISI ASD Specification (1986) and AISI LRFD Specification (1991a) have no provisions for the possible degradation in strength for the various limit states of flexural members caused by the presence of web openings. The use of members with web openings spaced at intervals along the longitudinal axis of the section provides passages for conduits frequently used in building construction. The most significant reason for conducting this research investigation was the concern that the presence of web opening(s) would have a degrading effect on the web crippling behavior of flexural members. Therefore, the effect of a web opening must be defined, and if necessary, recognized by the AISI Specification provisions

    ErbB2 enhances mammary tumorigenesis, oncogene-independent recurrence and metastasis in a model of IGF-IR-mediated mammary tumorigenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The type I insulin-like growth factor receptor (IGF-IR) and ErbB2 (Her-2) are receptor tyrosine kinases implicated in human breast cancer. Both proteins are currently the subject of targeted therapeutics that are used in the treatment of breast cancer or which are in clinical trials. The focus of this study was to utilize our inducible model of IGF-IR overexpression to explore the interaction of these two potent oncogenes.</p> <p>Results</p> <p>ErbB2 was overexpressed in our RM11A cell line, a murine tumor cell line that overexpresses human IGF-IR in an inducible manner. ErbB2 conferred an accelerated tumor onset and increased tumor incidence after injection of RM11A cells into the mammary glands of syngeneic wild type mice. This was associated with increased proliferation immediately after tumor cell colonization of the mammary gland; however, this effect was lost after tumor establishment. ErbB2 overexpression also impaired the regression of established RM11A tumors following IGF-IR downregulation and enhanced their metastatic potential.</p> <p>Conclusion</p> <p>This study has revealed that even in the presence of vast IGF-IR overexpression, a modest increase in ErbB2 can augment tumor establishment <it>in vivo</it>, mediate resistance to IGF-IR downregulation and facilitate metastasis. This supports the growing evidence suggesting a possible advantage of using IGF-IR and ErbB2-directed therapies concurrently in the treatment of breast cancer.</p

    Science objectives and performance of a radiometer and window design for atmospheric entry experiments

    Get PDF
    This paper describes the techniques developed for measuring stagnation-point radiation in NASA's cancelled Aeroassist Flight Experiment (AFE). It specifies the need for such a measurement; the types and requirements for the needed instruments; the Radiative Heating Experiment (RHE) developed for the AFE; the requirements, design parameters, and performance of the window developed for the RHE; the procedures and summary of the technique; and results of the arc-jet wind tunnel experiment conducted to demonstrate the overall concept. Subjects emphasized are the commercial implications of the knowledge to be gained by this experiment in connection with the Aeroassisted Space Transfer Vehicle (ASTV), the nonequilibrium nature of the radiation, concerns over the contribution of vacuum-ultraviolet radiation to the overall radiation, and the limit on the flight environment of the vehicle imposed by the limitations on the window material. Results show that a technique exists with which the stagnation-point radiation can be measured in flight in an environment of interest to commercial ASTV applications
    corecore