337 research outputs found

    Effect of sample dimensions on observed photoluminescence from Er<sup>3+</sup> ions in GeGaS and LaGaS glass hosts

    No full text
    The 4I9/2 - 4I13/2 emission band of trivalent Er3+ is potentially interesting light source for methane (CH4) detection because of its closeness to CH4 absorption band at 1.67 µm. In the present paper we report the influence of glass sample geometry on the shape of spectra and relative emission intensity of 4I9/2 - 4I13/2 band as well as three main 4I13/2 - 4I15/2 , 4I11/2 - 4I15/2 and 4I9/2 - 4I15/2 emission bands in sulfide glasses (GeGaS and LaGaS) doped with 0.5 at.% of Er. We show that the increase of sample size leads to a significant broadening of emission spectra as well as to the substantial suppression of 4I13/2 - 4I15/2 and 4I11/2 - 4I15/2 bands. The observed effects are explained by excitation diffusion or photon trapping (consecutive absorption and emission of light by Er3+ ions [1,2]) which turns out to be more effective in large samples. We present the results of Monte-Carlo simulations supporting our considerations and we discuss the possibility of increasing the 4I9/2 - 4I13/2 emission by controlling photon trapping

    Manufacturing high purity chalcogenide glass

    No full text
    Chalcogenide materials are finding increasing interest as an active material in next generation optical and electronic devices. There wide range of properties, ranging from photosensitivity, ability to host rare earth ions, electrical conductivity, phase change, exceptional optical non-linearity's to name only a few are fueling this interest. Moreover, the ability to synthesize these materials in numerous forms as diverse as 2D monolayers, microspheres, optical fibres, nanowires, thin films as well as bulk glass ingots of over a kilogram in size ensures their application space is vast.We began preparation of chalcogenides, largely based on sulphides, in 1992 and since then have built up an extensive capability for their purification, synthesis and fabrication in various forms. A key aspect of this facility is the ability to process in a flowing atmosphere of hydrogen sulphide which provided the capability of synthesis from elemental, oxide or halide precursors, processing through various chemical vapour deposition reactions as well as post purification. In this talk we describe the range of materials we synthesize highlighting high purity sulphide bulk glass and transition metal di-chalcogenides for electronic applications, crystalline semiconductors for solar cell applications, low power phase change memory devices, switchable metamaterial devices as well as traditional chalcogenides glass and optical fibre

    2D cognitive optical data processing with phase change materials

    No full text
    We demonstrate high-density, multi-level crystallization of a Ge2Sb2Te5 thin film using tightly focused femtosecond laser pulses. The optical reflectivity in each distinct phase states level is characterized for applications in ultra-fast cognitive parallel data processing

    Locating current sheets in the solar corona

    Get PDF
    Current sheets are essential for energy dissipation in the solar corona, in particular by enabling magnetic reconnection. Unfortunately, sufficiently thin current sheets cannot be resolved observationally and the theory of their formation is an unresolved issue as well. We consider two predictors of coronal current concentrations, both based on geometrical or even topological properties of a force free coronal magnetic field. First, there are separatrices related to magnetic nulls. Through separatrices the magnetic connectivity changes discontinuously. Coronal magnetic nulls are, however, very rare. At second, inspired by the concept of generalized magnetic reconnection without nulls, quasi-separatrix layers (QSL) were suggested. Through QSL the magnetic connectivity changes continuously, though strongly. The strength of the connectivity change can be quantified by measuring the squashing of the flux tubes which connect the magnetically conjugated photospheres. We verify the QSL and separatrix concepts by comparing the sites of magnetic nulls and enhanced squashing with the location of current concentrations in the corona. Due to the known difficulties of their direct observation we simulated the coronal current sheets by numerically calculating the response of the corona to energy input from the photosphere heating a simultaneously observed EUV Bright Point. We did not find coronal current sheets not at the separatrices but at several QSL locations. The reason is that although the geometrical properties of force free extrapolated magnetic fields can indeed, hint at possible current concentrations, a necessary condition for current sheet formation is the local energy input into the corona

    Review article: MHD wave propagation near coronal null points of magnetic fields

    Full text link
    We present a comprehensive review of MHD wave behaviour in the neighbourhood of coronal null points: locations where the magnetic field, and hence the local Alfven speed, is zero. The behaviour of all three MHD wave modes, i.e. the Alfven wave and the fast and slow magnetoacoustic waves, has been investigated in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null points, for a variety of assumptions, configurations and geometries. In general, it is found that the fast magnetoacoustic wave behaviour is dictated by the Alfven-speed profile. In a β=0\beta=0 plasma, the fast wave is focused towards the null point by a refraction effect and all the wave energy, and thus current density, accumulates close to the null point. Thus, null points will be locations for preferential heating by fast waves. Independently, the Alfven wave is found to propagate along magnetic fieldlines and is confined to the fieldlines it is generated on. As the wave approaches the null point, it spreads out due to the diverging fieldlines. Eventually, the Alfven wave accumulates along the separatrices (in 2D) or along the spine or fan-plane (in 3D). Hence, Alfven wave energy will be preferentially dissipated at these locations. It is clear that the magnetic field plays a fundamental role in the propagation and properties of MHD waves in the neighbourhood of coronal null points. This topic is a fundamental plasma process and results so far have also lead to critical insights into reconnection, mode-coupling, quasi-periodic pulsations and phase-mixing.Comment: 34 pages, 5 figures, invited review in Space Science Reviews => Note this is a 2011 paper, not a 2010 pape

    Preparation of chalcogenide materials for next generation optoelectronic devices

    No full text
    Chalcogenide materials are finding increasing interest as an active material in next generation optical and electronic devices. There wide range of properties, ranging from photosensitivity, ability to host rare earth ions, electrical conductivity, phase change, exceptional optical non-linearities to name only a few are fueling this interest. Moreover, the ability to synthesize these materials in numerous forms as diverse as 2D monolayers, microspheres, optical fibres, nanowires, thin films as well as bulk glass ingots of over a kilogram in size ensures their application space is vast. We began preparation of chalcogenides, largely based on sulphides, in 1992 and since then have built up an extensive capability for their purification, synthesis and fabrication in various forms. A key aspect of this facility is the ability to process in a flowing atmosphere of hydrogen sulphide which provided the capability of synthesis from elemental, oxide or halide precursors, processing through various chemical vapour deposition reactions as well as post purification.In this talk we describe recent additions to the range of materials we synthesize highlighting transition metal di-chalcogenides for electronic applications, an example of which is shown below, crystalline semiconductors for solar cell applications, ion implanted thin films which provide carrier type reversal, low power phase change memory devices, switchable metamaterial devices as well as traditional chalcogenides glass and optical fibre

    Cosmic-ray strangelets in the Earth's atmosphere

    Full text link
    If strange quark matter is stable in small lumps, we expect to find such lumps, called ``strangelets'', on Earth due to a steady flux in cosmic rays. Following recent astrophysical models, we predict the strangelet flux at the top of the atmosphere, and trace the strangelets' behavior in atmospheric chemistry and circulation. We show that several strangelet species may have large abundances in the atmosphere; that they should respond favorably to laboratory-scale preconcentration techniques; and that they present promising targets for mass spectroscopy experiments.Comment: 28 pages, 4 figures, revtex

    The Number Of Magnetic Null Points In The Quiet Sun Corona

    Full text link
    The coronal magnetic field above a particular photospheric region will vanish at a certain number of points, called null points. These points can be found directly in a potential field extrapolation or their density can be estimated from Fourier spectrum of the magnetogram. The spectral estimate, which assumes that the extrapolated field is random, homogeneous and has Gaussian statistics, is found here to be relatively accurate for quiet Sun magnetograms from SOHO's MDI. The majority of null points occur at low altitudes, and their distribution is dictated by high wavenumbers in the Fourier spectrum. This portion of the spectrum is affected by Poisson noise, and as many as five-sixths of null points identified from a direct extrapolation can be attributed to noise. The null distribution above 1500 km is found to depend on wavelengths that are reliably measured by MDI in either its low-resolution or high-resolution mode. After correcting the spectrum to remove white noise and compensate for the modulation transfer function we find that a potential field extrapolation contains, on average, one magnetic null point, with altitude greater than 1.5 Mm, above every 322 square Mm patch of quiet Sun. Analysis of 562 quiet Sun magnetograms spanning the two latest solar minimum shows that the null point density is relatively constant with roughly 10% day-to-day variation. At heights above 1.5 Mm, the null point density decreases approximately as the inverse cube of height. The photospheric field in the quiet Sun is well approximated as that from discrete elements with mean flux 1.0e19 Mx distributed randomly with density n=0.007 per square Mm

    Identifying patient-important outcomes in polycystic kidney disease: An international nominal group technique study

    Get PDF
    AIM: Patients with autosomal dominant polycystic kidney disease (ADPKD) are at increased risk of premature mortality, morbidities and complications, which severely impair quality of life. However, patient-centered outcomes are not consistently reported in trials in ADPKD, which can limit shared decision-making. We aimed to identify outcomes important to patients and caregivers and the reasons for their priorities. METHODS: Nominal group technique was adopted involving patients with ADPKD and caregivers who were purposively selected from eight centres across Australia, France and the Republic of Korea. Participants identified, ranked and discussed outcomes for trials in ADPKD. We calculated an importance score (0-1) for each outcome and conducted thematic analyses. RESULTS: Across 17 groups, 154 participants (121 patients, 33 caregivers) aged 19 to 78 (mean 54.5 years) identified 55 outcomes. The 10 highest ranked outcomes were: kidney function (importance score 0.36), end-stage kidney disease (0.32), survival (0.21), cyst size/growth (0.20), cyst pain/bleeding (0.18), blood pressure (0.17), ability to work (0.16), cerebral aneurysm/stroke (0.14), mobility/physical function (0.12), and fatigue (0.12). Three themes were identified: threatening semblance of normality, inability to control and making sense of diverse risks. CONCLUSION: For patients with ADPKD and their caregivers, kidney function, delayed progression to end-stage kidney disease and survival were the highest priorities, and were focused on achieving normality, and maintaining control over health and lifestyle. Implementing these patient-important outcomes may improve the meaning and relevance of trials to inform clinical care in ADPKD
    • …
    corecore