4 research outputs found

    Using Thermocouple, Thermistor, and Digital Sensors to Characterize the Thermal Wake Below Ascending Weather Balloons

    Get PDF
    In this paper we present additional results from our on-going research effort to characterize the thermal wake that trails below ascending latex weather balloons on flights into the stratosphere; a wake which interferes with the ability of temperature sensors in payload boxes hanging from the balloon (and hence enveloped by the wake) to correctly measure the ambient temperature of the atmosphere through which the balloon is ascending. A ā€œwake boomā€ is used to measure temperature variations up to 1.5 m horizontally from varying distances directly below the neck of the balloon. Results to date agree with the literature that especially above the tropopause the thermal wake is warmer than the ambient air during daytime ascents, due to solar radiation warming the balloon skin, but colder than ambient air during night-time ascents, due to adiabatic cooling of the gas inside the balloon (which also occurs in the daytime, but is smaller than the daytime warming effect). In particular we report on thermal wake characterization using (Neulog) thermocouple sensors, as compared to (HOBO) thermistors and (Arduino-logged) DS18B20 digital temperature sensors. We also present additional results from X-shaped 2-dimensional wake booms or ā€œX-Boomsā€ which allow us to compare wake temperatures on the sun side versus the shade side of the balloon, looking for asymmetries in the horizontal temperature profile

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore