43 research outputs found

    Characterisation of IL-23 receptor antagonists and disease relevant mutants using fluorescent probes

    Get PDF
    Association of single nucleotide polymorphisms in the IL-23 receptor with several auto-inflammatory diseases, led to the heterodimeric receptor and its cytokine-ligand IL-23, becoming important drug targets. Successful antibody-based therapies directed against the cytokine have been licenced and a class of small peptide antagonists of the receptor have entered clinical trials. These peptide antagonists may offer therapeutic advantages over existing anti-IL-23 therapies, but little is known about their molecular pharmacology. In this study, we use a fluorescent version of IL-23 to characterise antagonists of the full-length receptor expressed by living cells using a NanoBRET competition assay. We then develop a cyclic peptide fluorescent probe, specific to the IL23p19:IL23R interface and use this molecule to characterise further receptor antagonists. Finally, we use the assays to study the immunocompromising C115Y IL23R mutation, demonstrating that the mechanism of action is a disruption of the binding epitope for IL23p19

    Probing the binding of interleukin-23 to individual receptor components and the IL-23 heteromeric receptor complex in living cells using NanoBRET

    Get PDF
    Interleukin-23 (IL-23) is a pro-inflammatory cytokine involved in the host defence against pathogens, but also implicated in the development of several autoimmune disorders. The IL- 23 receptor has become a key target for drug discovery but the exact mechanism of the receptor ligand interaction remains poorly understood. In this study the affinities of IL-23 for its individual receptor components (IL23R and IL12R?1) and the heteromeric complex formed between them have been measured in living cells using NanoLuciferase tagged full-length proteins. Here, we demonstrate that TAMRA tagged IL-23 has a greater than seven fold higher affinity for IL12R?1 than IL23R. However, in the presence of both receptor subunits IL-23 affinity is increased more than three orders of magnitude to 27 pM. Furthermore, we show that IL-23 induces a potent change in the position of the N-terminal domains of the two receptor subunits consistent with a conformational change in the heteromeric receptor structure

    Structure Guided Design and Synthesis of a Pyridazinone Series of Trypanosoma cruzi Proteasome Inhibitors

    Get PDF
    There is an urgent need for new treatments for Chagas disease, a parasitic infection which mostly impacts South and Central America. We previously reported on the discovery of GSK3494245/DDD01305143, a preclinical candidate for visceral leishmaniasis which acted through inhibition of the Leishmania proteasome. A related analogue, active against Trypanosoma cruzi, showed suboptimal efficacy in an animal model of Chagas disease, so alternative proteasome inhibitors were investigated. Screening a library of phenotypically active analogues against the T. cruzi proteasome identified an active, selective pyridazinone, the development of which is described herein. We obtained a cryo-EM co-structure of proteasome and a key inhibitor and used this to drive optimization of the compounds. Alongside this, optimization of the absorption, distribution, metabolism, and excretion (ADME) properties afforded a suitable compound for mouse efficacy studies. The outcome of these studies is discussed, alongside future plans to further understand the series and its potential to deliver a new treatment for Chagas disease.</p

    Structure-guided design of a domain-selective bromodomain and extra terminal N-terminal bromodomain chemical probe

    Get PDF
    Small molecule mediated disruption of the protein-protein interactions between acetylated histone tails and the tandem bromodomains of the bromodomain and extra terminal (BET) family of proteins is an important mechanism of action for the potential modulation of immuno-inflammatory and oncology disease. High quality chemical probes have proven invaluable in elucidating profound BET bromodomain biology, with seminal publications of both pan- and domain-selective BET family bromodomain inhibitors enabling academic and industrial research. To enrich the toolbox of structurally differentiated N-terminal bromodomain (BD1) BET family chemical probes, this work describes an analysis of the GSK BRD4 bromodomain dataset through a lipophilic efficiency lens, which enabled identification of a BD1 domain biased benzimidazole series. Structure guided growth targeting a key Asp/His BD1/BD2 switch enabled delivery of GSK023, a high-quality chemical probe with 300–1000-fold BET BD1 domain selectivity and a phenotypic cellular fingerprint consistent with BET bromodomain inhibition

    Structure-based design of a bromodomain and extraterminal domain (BET) inhibitor selective for the N-terminal bromodomains that retains an anti-inflammatory and antiproliferative phenotype

    Get PDF
    The bromodomain and extraterminal domain (BET) family of epigenetic regulators comprises four proteins (BRD2, BRD3, BRD4, BRDT), each containing tandem bromodomains. To date, small molecule inhibitors of these proteins typically bind all eight bromodomains of the family with similar affinity, resulting in a diverse range of biological effects. To enable further understanding of the broad phenotype characteristic of pan-BET inhibition, the development of inhibitors selective for individual, or sets of, bromodomains within the family is required. In this regard, we report the discovery of a potent probe molecule possessing up to 150-fold selectivity for the N-terminal bromodomains (BD1s) over the C-terminal bromodomains (BD2s) of the BETs. Guided by structural information, a specific amino acid difference between BD1 and BD2 domains was targeted for selective interaction with chemical functionality appended to the previously developed I-BET151 scaffold. Data presented herein demonstrate that selective inhibition of BD1 domains is sufficient to drive anti-inflammatory and antiproliferative effects

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Mechanistic characterisation and inhibitor identification of Mycobacterium tuberculosis bifunctional N-acetyltransferase/uridylyltransferase GlmU

    Get PDF
    The mycobacterial cell envelope is a defining feature of the bacteria, primarily due to its highly-ordered, relatively impermeable nature that is likely one of the key attributes that has contributed to the success of this pathogenic over the last thousand years. Peptidoglycan is a unique and essential structural element that provides much of the strength and rigidity of the mycobacterial cell envelope. Most of the enzymes involved in the biosynthetic pathway of peptidoglycan have been shown to be essential for Mycobacterium tuberculosis growth. Mycobacterium tuberculosis GlmU is an essential bifunctional N-acetyltransferase, uridylyltransferase enzyme involved in the formation of uridine-diphosphate N-acetylglucosamine, which is the universal donor of N-acetylglucosamine for both peptidoglycan and lipopolysaccharide biosynthesis. This enzyme catalyses acetylation of glucosamine 1-phosphate, followed by uridylylation of N-acetylglucosamine 1-phosphate. Detailed characterisation of the kinetic mechanism ascertained that acetyl transfer progresses by the formation of a ternary complex, with acetyl coenzyme A binding preceding glucosamine 1-phosphate and coenzyme A the last product to dissociate. A novel ternary complex crystal structure, with glucose 1-phosphate and acetyl-coenzyme A, identified a candidate general base involved in the deprotonation of glucosamine 1-phosphate, as well as other important active site residues for substrate binding and catalysis. pH-rate studies and site-directed mutagenesis led to assignment of Histidine 374 as the catalytic general base. Solvent kinetic isotope effect experiments and pH-rate studies identified that acetyl transfer is partially rate-limiting. Small molecule screening led to the identification of novel inhibitors of GlmU catalysed acetyl transfer reaction. Inhibitors identified from the GSK TB set, were confirmed as GlmU interacting compounds and shown to inhibit the growth of M. tuberculosis. These results show that knowledge of the kinetic and catalytic mechanism enabled optimisation of a thorough screening approach that identified novel inhibitors that demonstrated that GlmU acetyltransferase activity is essential for M. tuberculosis growth

    Use of NanoBiT and NanoBRET to characterise Interleukin‐23 receptor dimer formation in living cells

    No full text
    Interleukin-23 (IL-23) and its receptor are important drug targets for the treatment of auto-inflammatory diseases. IL-23 binds to a receptor complex composed of two single transmembrane spanning proteins IL23R and IL12Rβ1. In this study we aimed to gain further understanding of how ligand binding induces signalling of IL-23 receptor complexes using the proximity-based techniques of NanoLuc Binary Technology (NanoBiT) and Bioluminescence Resonance Energy Transfer (BRET). To monitor the formation of IL-23 receptor complexes, we developed a split luciferase (NanoBiT) assay whereby heteromerization of receptor subunits can be measured through luminescence. The affinity of NanoBiT complemented complexes for IL-23 was measured using NanoBRET and cytokine-induced signal transduction was measured using a phospho-STAT3 AlphaLISA assay. NanoBiT measurements demonstrated that IL-23 receptor complexes formed to an equal degree in the presence and absence of ligand. NanoBRET measurements confirmed that these complexes bound IL-23 with a picomolar binding affinity. Measurement of STAT3 phosphorylation demonstrated that pre-formed IL-23 receptor complexes induced signalling following ligand binding. It was also demonstrated that synthetic ligand-independent signalling could be induced by high affinity (HiBit) but not low affinity (SmBit) NanoBiT crosslinking of the receptor N-terminal domains. These results indicate that receptor complexes form prior to ligand binding and are not sufficient to induce signalling alone. Our findings indicate that IL-23 induces a conformational change in heteromeric receptor complexes, to enable signal transduction. These observations have direct implications for drug discovery efforts to target the IL-23 receptor
    corecore