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ABSTRACT Chagas’ disease, caused by the protozoan parasite Trypanosoma cruzi, is
a potentially life-threatening condition that has become a global issue. Current treat-
ment is limited to two medicines that require prolonged dosing and are associated
with multiple side effects, which often lead to treatment discontinuation and failure.
One way to address these shortcomings is through target-based drug discovery on
validated T. cruzi protein targets. One such target is the proteasome, which plays a
crucial role in protein degradation and turnover through chymotrypsin-, trypsin-,
and caspase-like catalytic activities. In order to initiate a proteasome drug discovery
program, we isolated proteasomes from T. cruzi epimastigotes and characterized
their activity using a commercially available glow-like luminescence-based assay. We
developed a high-throughput biochemical assay for the chymotrypsin-like activity of
the T. cruzi proteasome, which was found to be sensitive, specific, and robust but
prone to luminescence technology interference. To mitigate this, we also developed
a counterscreen assay that identifies potential interferers at the levels of both the lu-
ciferase enzyme reporter and the mechanism responsible for a glow-like response.
Interestingly, we also found that the peptide substrate for chymotrypsin-like protea-
some activity was not specific and was likely partially turned over by other catalytic
sites of the protein. Finally, we utilized these biochemical tools to screen 18,098
compounds, exploring diverse drug-like chemical space, which allowed us to identify
39 hits that were active in the primary screening assay and inactive in the counter-
screen assay.

KEYWORDS Chagas’ disease, Trypanosoma cruzi, assay development, drug discovery,
drug screening, pharmacology, proteasome

Chagas’ disease is a parasitic disease caused by the kinetoplastid parasite Trypano-
soma cruzi. The disease is a problem, not only in the regions of endemicity in Latin

America, but also more globally because of migration (1, 2). Disease progression is
characterized by an initial acute phase, with symptoms such as fever and local inflam-
mation, followed by a long, symptomless indeterminate phase. In a subset of people,
the disease develops into a symptomatic, chronic phase with cardiomyopathy and
mega-organ disease as the main manifestations. Approximately 2% of infected people
develop cardiac problems annually (3), with an associated death toll of around 10,000
per year (2). Treatment for Chagas’ disease is currently limited to the two nitrohetero-
cyclic drugs benznidazole and nifurtimox. Benznidazole is typically used as front-line
treatment, as it is better tolerated than nifurtimox, notwithstanding a 10% treatment
discontinuation rate due to its own side effects (4). New, better-tolerated medicines are
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urgently required, but their development has proven very difficult, as exemplified by
the failure in clinical trials of the only two new candidate treatments, posaconazole and
fos-ravuconazole (5, 6). Many efforts are ongoing to identify new starting points for
drug discovery, often through large-scale phenotypic screening (7–12). Target-based
screening, where a particular protein is assayed in its purified state, is an alternative
approach with the advantages of more straightforward understanding of chemical
structure-activity relationships (SAR) due to the absence of cell membranes, a direct
relationship between compound affinity and target inhibition or binding, and the
opportunity to generate structural information to guide chemistry design. Lack of
translation of target inhibition to parasite death is an important risk when investing in
such a program, and selecting well-validated targets is essential. One powerful method
to identify suitable protein targets is by determining the modes of action of com-
pounds that show the desired phenotypic effects in terms of parasite killing. Recently,
the proteasome was identified as a promising drug target for kinetoplastid diseases
through mode-of-action determination of promising phenotypically active compounds
(GNF6702 and GSK3494245/DDD01305143) (9, 13). The proteasome is a key component
of the ubiquitin-proteasome protein degradation system and plays an important role in
many cellular processes, including protein turnover and cell signaling (14). In eu-
karyotes, the proteasome comprises a central 20S cylindrical structure and two regu-
latory 19S complexes on either end of the 20S core. The 20S unit is made up of two
outer (�) and two inner (�) polypeptide rings, where three of the �-type subunits are
involved in chymotrypsin-, trypsin-, and caspase-like catalytic activities (15, 16). The
proteasome is a well-exploited target in drug discovery for a variety of indications,
including cancer, inflammation, and infectious diseases (17). In terms of parasitic
diseases, the Plasmodium proteasome is well characterized, and proof of concept that
selective inhibition is possible has opened the route to development of new malaria
drugs targeting the proteasome (18). GNF6702 is active against Leishmania donovani,
Trypanosoma brucei, and T. cruzi both in vitro and in vivo while showing no toxicity
against mammalian cells, and GSK3494245/DDD01305143 is a preclinical candidate for
visceral leishmaniasis developed from a T. cruzi screening hit, demonstrating that the
proteasome is a suitable drug target across the kinetoplastid parasites. These com-
pounds exert their effects on the parasites through the selective inhibition of the
chymotrypsin-like activity of the parasite proteasome, and not the caspase- or trypsin-
like activity (9, 13).

Attrition in drug discovery programs is high, and even compounds that demonstrate
proof-of-concept efficacy in animal models frequently fail at later stages in the drug
development process, often for non-target-related reasons (19). Once a validated target
has been identified, it is therefore sensible to generate multiple chemical classes of
inhibitors. With this in mind, we have started a hit discovery program for the T. cruzi
proteasome chymotrypsin-like activity. Here, we present the development of a
luminescence-based high-throughput screening (HTS) assay using partially purified T.
cruzi proteasomes, as well as a technology interference counterscreen assay, which we
then used to screen two diverse sets of compounds (18,098 compounds in total) in an
effort to identify potential new starting points for a drug discovery program against
Chagas’ disease.

RESULTS AND DISCUSSION
T. cruzi proteasome characterization. Proteasomes were harvested from cleared

epimastigote lysates through ultracentrifugation, followed by partial purification using
size exclusion chromatography. In order to confirm the presence of enzymatic activity,
chymotrypsin-, trypsin-, and caspase-like activities of the proteasome were measured
using luminogenic versions of established peptide substrates (16, 20) and a commer-
cially available glow response luminescence-based assay system (20). All three types of
catalytic activities were found to be present in the pooled, partially purified T. cruzi
proteasome material. To further profile the isolated protein, the catalytic activities of
the proteasome were measured over time in the presence of the irreversible protea-
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some inhibitor epoxomicin (21, 22). The degree of inhibition of the chymotrypsin-like
activity was the highest, followed by trypsin- and caspase-like activities (Fig. 1), which
is consistent with previous literature reports (22). The characteristic plateau of the
kinetic curves in the absence of inhibitor compound corresponded to steady-state
conditions, where the rate of substrate consumption by the proteasome was equal to
the rate of product consumption by the luciferase reporter enzyme (20). In the case of
chymotrypsin-like activity, steady-state conditions were established within approxi-
mately 15 min and were maintained for the remainder of the 75-min kinetic experi-
ment.

High-throughput primary screening assay development. Following the valida-
tion of the T. cruzi proteasome purification and isolation methodology, we diverted
our efforts toward the optimization of the commercially available proteasome
chymotrypsin-like activity luminescence-based assay for HTS. In the presence of
a fixed amount of chymotrypsin-like substrate (i.e., succinyl-Leu-Leu-Val-Tyr-amino-
luciferin) and under steady-state conditions, the luminescence response was shown
to be linearly proportional (R2 � 0.9998) to the amount of T. cruzi proteasome up
to a top concentration equivalent to a 1-in-2 dilution of the stock material (i.e., a
concentration multiplication factor [CMF] of 0.5) (Fig. 2a). Steady-state conditions
were established rapidly for all of the tested concentrations of the T. cruzi protea-
some and were maintained throughout the course of the kinetic experiment, with
the exception of the top protein concentration (i.e., undiluted stock), where a
drop-off in the luminescence response was observed after approximately 30 min
(Fig. 2b). This loss of steady state was likely a consequence of substrate depletion.
By varying the concentration of suc-Leu-Leu-Val-Tyr-aminoluciferin in the presence
of a fixed amount of T. cruzi proteasome, substrate inhibition was observed at a
concentration of 600 �M under pre-steady-state conditions (Fig. 3a). This is in line
with the work of Stein et al., who also reported proteasome chymotrypsin-like
activity inhibition at high concentrations of a fluorescence-tagged variant of the
suc-Leu-Leu-Val-Tyr peptide substrate (i.e., suc-Leu-Leu-Val-Tyr-AMC) (23). Utilizing

FIG 1 Chymotrypsin-like (a), trypsin-like (b), and caspase-like (c) activities of the T. cruzi proteasome in the presence
(black circles) and absence (red circles) of 5 �M epoxomicin. Data are shown for 6 technical replicates (n � 6); the
error bars represent standard deviations (SD).
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the Z factor as a measure of assay quality, where values of �0.5 are generally
accepted as sufficient for HTS (24), a 1-in-8 dilution (CMF � 0.125) of the stock T.
cruzi proteasome preparation and a suc-Leu-Leu-Val-Tyr-aminoluciferin substrate
concentration of 20 �M (final assay concentrations) were found to be optimal,
affording Z factor values of �0.75 at steady state. Under these assay conditions, the
apparent steady-state Km for the suc-Leu-Leu-Val-Tyr-aminoluciferin substrate was
found to be 93.5 �M (95% confidence interval [CI] � 78.8 to 108.4 �M) (Fig. 3b),
which was only marginally higher than the approximate value of 60 �M that was
reported by O’Brien et al. using a similar assay platform in a cellular system (20).
Finally, as our screening compound libraries are formulated in dimethyl sulfoxide
(DMSO), the tolerance of the biochemical assay for this solvent was investigated. We
found that the maximum tested concentration of DMSO (1% [vol/vol] final assay
concentration) was well tolerated by the system and had a negligible effect on the
luminescence response (see Fig. S2 in the supplemental material).

High-throughput primary screening assay validation. In order to validate the bio-
chemical assay and identify a suitable control inhibitor compound for HTS, chymotrypsin-,
trypsin-, and caspase-like activity concentration-response relationships for a panel of
commercially available proteasome inhibitors were established (Fig. 4; see Table S1 in
the supplemental material). Of the tested compounds, oprozomib exhibited specificity
for the T. cruzi proteasome chymotrypsin-like active sites, which is in line with previous
literature reports (9, 25). Interestingly, the compound failed to completely abolish
catalytic activity in this biochemical assay. It was hypothesized that the suc-Leu-Leu-
Val-Tyr-aminoluciferin substrate was not specific for the chymotrypsin-like active site of
the T. cruzi proteasome, and residual turnover of the substrate by the trypsin- and/or
caspase-like active sites resulted in incomplete apparent inhibition of chymotrypsin-like
activity. To investigate this further, steady-state chymotrypsin-like activity concen-
tration-response relationships were established for oprozomib using 20 �M and 600
�M suc-Leu-Leu-Val-Tyr-aminoluciferin substrate. It was envisaged that in the presence
of a specific chymotrypsin-like activity inhibitor, an increase in nonspecific luminogenic

FIG 2 Chymotrypsin-like activity plotted as a function of either T. cruzi proteasome concentration after
a 60-min biochemical reaction (a) or time at different proteasome stock solution dilutions (b). Data are
shown for 5 technical replicates (n � 5); the error bars represent SD. Linear regression, R2 � 0.999.
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substrate would result in an increased residual luminescence response and, subse-
quently, a reduced upper concentration-response curve plateau. The marked reduction
in the upper concentration-response curve plateaus following a 30-fold increase in the
suc-Leu-Leu-Val-Tyr-aminoluciferin substrate (see Fig. S3 in the supplemental material)
and complete inhibition of T. cruzi proteasome chymotrypsin-like activity by the
remaining tested compounds, which are also inhibitors of the trypsin- and caspase-like
active sites (Fig. 4; see Table S1), provided favorable evidence for the above-mentioned
hypothesis. These findings are in line with those reported by Kirkman et al., who
showed that both the �2 and �5 subunits of the Plasmodium falciparum proteasome
were capable of hydrolysis of the fluorescence-tagged suc-Leu-Leu-Val-Tyr-AMC sub-
strate (26). It is worth noting that bortezomib, ixazomib, and MG132 exhibited biphasic
chymotrypsin-like activity dose-response curves. Taking the above into account, it is
possible that these biphasic responses were a consequence of suc-Leu-Leu-Val-Tyr-
aminoluciferin substrate turnover by the caspase- and/or trypsin-like active sites of the
proteasome. For HTS data normalization, a control compound that can abolish T. cruzi
proteasome catalytic activity would be preferred. With this in mind, and due to its
highly potent inhibitory properties, bortezomib was selected as the control inhibitor.

Next, we compared the chymotrypsin-like pIC50 values (negative logarithm of
half-maximal inhibitory concentration [molar]) of the commercial proteasome in-
hibitors with their pEC50 values (negative logarithm of half-maximal effective
concentration [molar]) obtained using a cellular T. cruzi epimastigote viability assay
(Fig. 5; see Table S1). All of the tested compounds were found to be active in the cellular
assay. Epoxomicin and oprozomib exhibited equipotency between the cell-free
chymotrypsin-like activity and cellular assays, while the remaining peptide-based com-
pounds exhibited �10-fold higher potency in the cell-free versus cellular systems.
Compared to a cell-free system, protein target engagement by an inhibitor in a cellular

FIG 3 T. cruzi proteasome chymotrypsin-like activity plotted as a function of time in the presence of
various concentrations of suc-Leu-Leu-Val-Tyr-aminoluciferin substrate (a) or as a function of the suc-
Leu-Leu-Val-Tyr-aminoluciferin substrate concentration after a 60-min biochemical reaction fitted to the
Michaelis-Menten model (apparent Km � 93.5 �M [95% CI � 78.8 to 108.4 �M]) (b). Data are shown for
3 technical replicates (n � 3); the error bars represent SD.
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assay is dependent on a number of additional factors, including cellular penetration
and retention, which are heavily influenced by the physiochemical properties of the
compound, as well as the cellular substrate concentration and affinity. Therefore, it is
not unusual for greater inhibitory potency to be observed in a cell-free versus a cellular
assay system. The tested compounds can be clustered into peptide epoxyketone,
peptide boronate, and peptide aldehyde structural classes (Fig. 6), which target the
catalytic active sites of the proteasome. The peptide epoxyketones are known to be
irreversible proteasome inhibitors, while the boronate and aldehyde peptide analogues
exhibit their effects through reversible binding mechanisms (21, 25, 27). The lower
potency in the cellular assay for the last two classes could thus be explained by a
presumably high concentration of high-affinity substrates in cells (all proteins that are
marked for degradation), which is something that would affect the irreversible inhib-
itors less.

High-throughput screening test studies. Following pharmacological validation of
the T. cruzi proteasome luminescence-based assay, a number of test screening proce-
dures were undertaken to evaluate the suitability of the assay in a high-throughput
format. First, the sensitivity, specificity, and robustness of the platform were tested by

FIG 4 Cell-free T. cruzi proteasome chymotrypsin-like (black circles), trypsin-like (red circles), and caspase-like
(green triangles) activity concentration-response curves for a panel of commercially available proteasome inhibitors
(i.e., epoxomicin, oprozomib, bortezomib, ixazomib, MG132, and MG115). Data are shown for 4 independent
replicates (n � 4). The error bars represent SD.
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assaying two 384-well microplates that were randomly spiked with the control com-
pound bortezomib at concentrations that were approximately equivalent to the 30%
inhibitory concentration (IC30), IC50, and IC70 values in this biochemical assay. The assay
was found to be highly sensitive, specific, and robust, with a sensitivity of 100%,
specificity of 99.4% (see Table S2 in the supplemental material), and Z factor value of
0.87. Next, a “nuisance” set of 1,027 compounds, selected to highlight common
biochemical assay interference mechanisms (28), was tested. A good linear correlation
was established between screening replicates of this compound set (R2 � 0.95) (see Fig.
S4 in the supplemental material). However, a high number of hits that were capable of
inhibiting the biochemical response by 30% or more were identified (239 compounds;
hit rate � 23.3%). Further evaluation of the interference annotations for these com-
pounds revealed that the assay appeared to be particularly sensitive to interferers with
the luciferase enzyme and other mechanisms responsible for a sustained glow-like
luminescence response (Table 1).

FIG 5 Correlation of T. cruzi proteasome pIC50 values obtained using cell-free and cellular assays for (from
left to right) MG115, oprozomib, epoxomicin, MG132, ixazomib, and bortezomib. Circles, reversible
peptide-based inhibitors; triangles, irreversible peptide-based inhibitors. Data are shown for 3 or 4
independent replicates (n � 3 or 4). The error bars represent SD.

FIG 6 Structures of commercially available proteasome inhibitors.
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High-throughput counterscreen (technology interference) assay development.
High levels of technology interference during early screening stages of the drug
discovery process can translate into large numbers of false-positive hits being selected
for follow-up in orthogonal assay hit confirmation studies, which are often resource
intensive and have lower throughput. In an attempt to mitigate this issue, our efforts
were directed toward developing a secondary high-throughput biochemical counter-
screen assay in order to deconvolute luminescence technology interferers from poten-
tial T. cruzi proteasome inhibitors. By exposing the luciferase reporter component of the
proteasome luminescence-based assay system to various concentrations of aminolu-
ciferin substrate, a rapid decline in luminescence signal was observed as substrate was
consumed and eventually depleted (Fig. 7a). However, it was noted that when the
substrate concentration was sufficiently high (i.e., �2.5 �M), the rapid initial decline in
signal was followed by a sustained luminescence response that lasted the duration of

TABLE 1 Biochemical assay interference mechanisms identified during the screen of the nuisance compound set using the primary
T. cruzi proteasome chymotrypsin-like activity luminescence-based assay and the secondary luciferase reporter counterscreen assay

Interference mechanism Total no.a No. of primary-screen hitsb

Secondary counterscreen

No. of hitsb % detectedc

Inhibition of luminescence-coupling system 39 37 33 89
PDELight inhibition 25 20 15 75
Luciferase inhibition 29 17 11 65
DNA binders 65 34 1 3
Redox cyclers 212 30 4 13
Zn chelators 28 5 1 20
Europium donor quenchers 26 2 0 0
Other 1,014 208 23 11
aTotal number of compounds in the nuisance set annotated with the listed interference mechanism (some compounds contain primary and secondary annotations).
bNumber of hits identified from nuisance set screens containing primary and/or secondary annotations for the listed interference mechanisms.
cPercentage of hits detected by the secondary counterscreen assay relative to the primary screen assay.

FIG 7 Luminescence response plotted as a function of time in the presence of various concentrations of
aminoluciferin substrate (a) or in the presence (red circles) or absence (black circles) of 4 mM exogenous
ATP (b). Data are shown for 4 technical replicates (n � 4). The error bars represent SD.
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the experiment (i.e., 75 min). Bioluminescence is an ATP-driven process that involves
the oxidation of aminoluciferin by a luciferase enzyme, resulting in the generation of a
detectable photon. In order to establish a sustained glow-like luminescence response,
ATP must be regenerated. Therefore, we envisaged that the luciferase reporter com-
ponent of the biochemical assay was comprised of an ATP reservoir, which in the
presence of sufficient aminoluciferin substrate was rapidly depleted, and the lumines-
cence response became rate limited by ATP regeneration, thereby resulting in a
sustained glow-like signal. This was rationalized by the increase in the time taken to
reach a sustained luminescence response when the amount of exogenous ATP in the
assay system was increased (Fig. 7b). Based on these findings and calculated Z factor
values, we selected an aminoluciferin substrate concentration of 5 �M (final assay
concentration) and a 60-min incubation period as desirable assay conditions.

High-throughput counterscreen (technology interference) assay validation. In
order to validate the secondary luciferase reporter counterscreen assay, screening of
the nuisance compound set was performed using the assay, and a total of 76 hits were
identified (hit rate � 7.4%) using a 30% inhibition cutoff threshold. The counterscreen
detected a large proportion of interferers with the luciferase enzyme and mechanisms
responsible for a sustained glow-like luminescence response that were identified as hits
using the primary T. cruzi proteasome chymotrypsin-like activity assay (Table 1). The
inability of the counterscreen assay to detect all of the luciferase enzyme inhibitor hits
could be explained by slight differences in configuration between the counterscreen
and primary assays. In the case of the primary screening assay, aminoluciferin was
generated in situ by the T. cruzi proteasome at concentrations presumably lower than
those utilized in the counterscreen assay, where an excess of the substrate was required
to generate a sustained response. It was therefore likely that the counterscreen assay
was less sensitive to competitive inhibitors of the luciferase enzyme than the primary
screening assay. It is also important to appreciate that the counterscreen assay was not
designed to identify nonspecific sources of technology interference, such as DNA
binders and redox cyclers, which were both prominent hits in the primary screening
platform, and that some compounds in the nuisance set may be genuine inhibitors of
the proteasome. However, it was envisaged that removal of technology interference at
the level of the luminescence-based reporter system would sufficiently reduce false-
positive hits to allow hit confirmation studies further downstream using lower-
throughput orthogonal assay platforms.

High-throughput screening of diverse compound libraries. With the appropriate
biochemical tools in place, we proceeded by screening two compound libraries com-
prising a total of 18,098 compounds covering traditional small-molecule chemical space
using the primary T. cruzi proteasome chymotrypsin-like activity luminescence-based
assay at a fixed compound concentration of 9.4 �M. Following this effort, we identified
372 compounds (hit rate � 2.1%) capable of inhibiting the biochemical response by
30% or more (Fig. 8). Based on our previous findings, we envisaged that the high hit
rate was partially driven by technology interference at the level of the luciferase
reporter system. Therefore, as an initial effort to eliminate a proportion of false-positive
hits prior to downstream concentration-response assessment, the hit compounds were
rescreened using the primary chymotrypsin-like activity assay, as well as the secondary
counterscreen assay. By application of fixed �30% and �45% inhibition threshold
parameters for the former and latter assays, respectively, 180 hits were identified for
further evaluation (Fig. 9). Concentration-response assessment of these compounds
using the above-mentioned assays was performed, and good linear correlations were
obtained between the calculated pIC50 values from the respective assay replicates (see
Fig. S5a and b in the supplemental material). Of the 180 hit compounds, 163 were
found to be active in the primary T. cruzi proteasome chymotrypsin-like activity assay
(i.e., pIC50 � 4.0) (see Fig. S5a). However, of these, only 39 compounds were found to
be completely inactive (i.e., pIC50 � 4.0) against the secondary counterscreen assay (see
Fig. S6 and Table S3 in the supplemental material), with the remaining compounds
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exhibiting some form of technology interference (Fig. 10). Interestingly, the potency
correlation between the primary chymotrypsin-like activity and counterscreen assays
revealed approximately 5-fold higher pIC50 values for the former assay than for the
counterscreen assay. This skewed relationship could be explained by the presumably
lower aminoluciferin substrate concentration present in the primary screening assay
than in the counterscreen assay, as described earlier, which would likely make the
chymotrypsin-like activity assay more sensitive to potential interferers.

Conclusions. We have successfully validated a method for the production and
partial purification of T. cruzi proteasomes, which we have shown to exhibit the
characteristic chymotrypsin-, trypsin-, and caspase-like activities. The isolated protein
material was used to adapt a commercially available glow response luminescence-
based assay system into a sensitive and specific high-throughput platform aimed at
identifying T. cruzi proteasome inhibitors. Interestingly, our findings suggested that
the suc-Leu-Leu-Val-Tyr-aminoluciferin substrate used in this biochemical assay to
probe proteasome chymotrypsin-like activity was not specific for the single type of
T. cruzi proteasome active site. Instead, it appeared that a fraction of the substrate
was being turned over by the trypsin- and/or caspase-like active sites of the protein.
Validation of the luminescence-based biochemical assay using a nuisance com-
pound set designed to provide an indication of types of technology interference
revealed that the assay was prone to interference at the level of the luciferase
reporter. To combat this issue, we developed a high-throughput secondary coun-

FIG 8 Single-point high-throughput screen of 18,098 structurally diverse compounds at a concentration
of 9.4 �M using the primary T. cruzi proteasome chymotrypsin-like activity assay. The red circles represent
372 hits exhibiting �30% inhibition. Mean Z factor � 0.91 � 0.03 (SD); n � 58.

FIG 9 Single-point high-throughput rescreen of 372 initial hit compounds at a concentration of 9.4 �M
using the primary T. cruzi proteasome chymotrypsin-like activity assay and the secondary technology
interference counterscreen assay. The data represent means of two independent replicates per assay
(n � 2). The red circles represent 180 compounds that exhibited �30% and �45% inhibition in the
primary and secondary counterscreen assays, respectively. Primary assay mean Z factor � 0.88 � 0.04
(SD), n � 4; counterscreen assay mean Z factor � 0.79 � 0.11 (SD), n � 4.
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terscreen assay that was sensitive to both luciferase inhibitors and inhibitors of
the ATP regeneration mechanism responsible for a sustained glow-like lumines-
cence response. We then utilized the luminescence-based T. cruzi proteasome
chymotrypsin-like activity assay to screen a total of 18,098 structurally diverse
compounds. Following rescreening and technology interference deconvolution
using the secondary counterscreen assay, 39 hits of interest were identified. Further
evaluation of these potential T. cruzi proteasome inhibitors as new chemical starting
points for a Chagas’ disease drug discovery program are under way.

MATERIALS AND METHODS
General. The commercially available Proteasome-Glo 3-substrate system and chymotrypsin-like

assay kits (Promega; catalogue no. G8531 and G8622, respectively) were assembled according to the
manufacturers’ protocols (29) unless otherwise stated. Briefly, Proteasome-Glo buffer was used to
formulate the luciferin detection reagent (containing a recombinant thermostable luciferase en-
zyme) to approximately 0.35% (wt/vol) final assay concentration. The luciferin detection reagent
was then mixed with Proteasome-Glo trypsin-, caspase-, or chymotrypsin-like reagents (compris-
ing 15 �M Z-Leu-Arg-Arg-aminoluciferin (Z is benzyloxycarbonyl), 20 �M Z-Nle-Pro-Nle-Asp-
aminoluciferin, or 20 �M suc-Leu-Leu-Val-Tyr-aminoluciferin substrate, respectively, at final assay
concentrations), and the mixture was allowed to incubate at room temperature for 60 min prior to
use. T. cruzi proteasome buffer comprised 50 mM Tris-HCl, pH 7.5, 10 mM sucrose, 5 mM MgCl2, 1 mM
dithiothreitol, 2 mM ATP, 150 mM NaCl, 1 mM EDTA, and 0.05 mg/ml bovine serum albumin (BSA).
T. cruzi strain Silvio X10/7 epimastigotes were maintained in vitro at 28°C in RTH-fetal calf serum
(FCS) culture medium (RPMI 1640 supplemented with 0.4% Trypticase peptone, 0.017 M HEPES,
25 �M hemin, 10% heat-inactivated FCS). Biochemical cell-free assays were performed in an 8-�l
final assay volume using 384-well white low-volume plates (Greiner; catalogue no. 784904), and
cellular assays were performed in a 50-�l final assay volume using 384-well standard volume plates
(Greiner; catalogue no. 781098). Luminescence was read using an EnVision 2102 Multilabel Reader
(PerkinElmer, USA) with 0.2-s per well reading time, unless otherwise specified. DMSO or compound
was added to the assay plates using Echo acoustic dispensers (Labcyte, USA). Reagent addition for
high-throughput screening assays was performed using an Xrd-384 liquid dispenser (FluidX, United
Kingdom) and a BioFill Solo/Xrd-384 8-channel resin nozzle (0.5- to 200-�l) tubing cartridge (FluidX;
catalogue no. 34-1003). Data analysis was performed using SigmaPlot 12.5 software unless otherwise
stated. Z factor values were calculated using the following equation: Z factor � 1 � ({3 � [1.483 �
(RLU MAD Max)]} � {3 � [1.483 � (RLU MAD Min)]})/(median RLU Max � median RLU Min), where
MAD is the median absolute deviation, Max is the maximum-effect control samples, and Min is the
minimum-effect control samples.

T. cruzi proteasome production and partial purification. Mid-log-phase T. cruzi strain Silvio X10/7
cells were harvested by centrifugation (900 � g; 35 min). The resulting cell pellet was resuspended in
Dulbecco’s phosphate-buffered saline (DPBS), and the cells were counted using a Casy Cell counter�

system; 2 � 1010 cells were pelleted in a 50-ml conical tube (900 � g; 15 min). The cell pellets were then
inactivated by three freeze-thaw cycles and stored at �80°C. To validate biological inactivation,
approximately 10% of the pellet by weight was resuspended in RTH-FCS medium and incubated at
28°C for 6 weeks. Absence of cell growth after 6 weeks was considered evidence of inactivation. For
proteasome purification, T. cruzi pellets were thawed on ice, resuspended, and diluted in an equal
volume of double-strength sucrose lysis buffer (100 mM Tris-HCl, pH 7.5, 500 mM sucrose, 10 mM

FIG 10 Plot of the mean pIC50 values (n � 2) of 180 hit compounds obtained using the primary T. cruzi
proteasome chymotrypsin-like activity assay and the secondary counterscreen assay. The red circles
represent 39 compounds that were active against the former assay (pIC50 � 4) and inactive against the
counterscreen assay (pIC50 � 4). Primary assay mean Z factor � 0.67 � 0.05 (SD), n � 12; counterscreen
assay mean Z factor � 0.77 � 0.04 (SD), n � 12.
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MgCl2, 2 mM dithiothreitol, 4 mM ATP, 100 mM NaCl, 2 mM EDTA), followed by further dilution using
single-strength sucrose lysis buffer to afford a cellular concentration of 2 � 109 cells/ml. The
resulting suspension was passed through a continuous-flow cell disruptor (Constant Systems
Limited, United Kingdom) at 20,000 lb/in2 to lyse the cells. The lysate was then clarified by
centrifugation at 20,000 � g at 4°C for 30 min, and the resulting supernatant was ultracentrifuged
at 300,000 � g at 4°C for 120 min to form a pellet. The pellet was then resuspended using 2 ml of
T. cruzi proteasome buffer (without BSA) per liter of original T. cruzi growth and solubilized by rolling
at 4°C for 30 to 60 min. Insoluble material was removed by centrifugation at 20,000 � g at 4°C for
20 min. The sample was then passed through a 0.2-�m syringe filter and purified using a 100-ml
Superose 6 gel filtration column (GE Healthcare) at a flow rate of 0.5 ml/min.

Activity-based characterization of T. cruzi proteasome. Four microliters of each undiluted 2-ml gel
filtration fraction was incubated at room temperature with either epoxomicin (Sigma-Aldrich; catalogue
no. E3652; 5 �M and 0.5% [vol/vol] DMSO final concentrations) or DMSO (0.5% [vol/vol] final assay
concentration) at room temperature for 60 min. Next, 4 �l of the luciferin detection and Proteasome-Glo
chymotrypsin-like reagent mixture was added to initiate the biochemical reaction. The reaction was
allowed to proceed at room temperature for 20 min, after which the luminescence was read. Data were
acquired from a single replicate (n � 1). Gel filtration fractions displaying chymotrypsin-like activity
amenable to epoxomicin inhibition were pooled (see Fig. S1 in the supplemental material). Four
microliters of the pooled protein material was then added to 4 �l of luciferin detection and Proteasome-
Glo chymotrypsin-, trypsin-, or caspase-like reagent mixtures in the presence of either epoxomicin (5 �M
and 0.5% [vol/vol] DMSO final assay concentrations) or DMSO (0.5% [vol/vol] final assay concentration).
Luminescence was read immediately and then every 90 s for 75 min. Data were acquired from 6 technical
replicates (n � 6).

Primary assay development and kinetic-parameter determination. Assay linearity and the opti-
mal amount of T. cruzi proteasome for screening was determined by first serially diluting (1 in 2; CMF �
0.5) the proteasome stock solution in proteasome buffer to generate 10 additional concentrations. Next,
4 �l of each of the T. cruzi proteasome solutions was added to 4 �l of the luciferin detection and
Proteasome-Glo chymotrypsin-like reagent mixture. Luminescence was read immediately and then every
90 s for 75 min. Data were acquired from 5 technical replicates (n � 5). To calculate the Michaelis
constant (Km) and identify the optimal amount of chymotrypsin-like suc-Leu-Leu-Val-Tyr-aminoluciferin
substrate for screening, the Proteasome-Glo chymotrypsin-like assay (Promega; catalogue no. G8622)
luciferin detection reagent (comprising luciferase enzyme in Proteasome-Glo buffer) was prepared
according to the manufacturers’ protocol (29). A 1,200 �M solution (600 �M final assay concentration) of
the substrate was prepared and subsequently serially diluted (1 in 2; CMF � 0.5) using the luciferin
detection reagent to generate 8 additional concentrations. Next, 4 �l of each of the luciferin detection
and substrate solution mixtures was added to 4 �l of partially purified T. cruzi proteasome that was
diluted 1 in 4 (CMF � 0.25) from the original stock using proteasome buffer. Luminescence was read
immediately and then every 90 s for 75 min. Data were acquired from 3 technical replicates (n � 3). The
Km was obtained by fitting all of the individual replicate data to the Michaelis-Menten equation shown
below ([S] is substrate concentration):

v �
Vmax�S�

Km � �S�
DMSO tolerance. Partially purified T. cruzi proteasome stock solution was diluted 1 in 4 (CMF � 0.25)

using proteasome buffer, and 4 �l of the diluted solution was added to various volumes of DMSO
(corresponding to 1% [vol/vol], 0.5% [vol/vol], 0.25% [vol/vol], and 0.125% [vol/vol] final assay concen-
trations). Next, 4 �l of the luciferin detection and Proteasome-Glo chymotrypsin-like reagent mixture was
added to initiate the biochemical reaction. Luminescence was read immediately and then every 90 s for
75 min. Data were acquired from 6 technical replicates (n � 6).

Cell-free pIC50 determinations for commercial compounds. Partially purified T. cruzi proteasome
stock solution was diluted 1 in 4 (CMF � 0.25) using proteasome buffer, and 4 �l of the diluted solution
was incubated at room temperature for 60 min in various concentrations of compound (oprozomib,
bortezomib, ixazomib, and MG132 [Selleckchem; catalogue no. S7049, S1013, S2180, and S2619 respec-
tively]; MG115 [Enzo Life Sciences; catalogue no. ALX-260-091-M005]; epoxomicin [Sigma-Aldrich; cata-
logue no. E3652]) (12 final assay concentrations ranging from 3.09 � 10–5 M to 1.11 � 10–9 M at 1-in-3
dilution increments). Next, 4 �l of luciferin detection and Proteasome-Glo chymotrypsin-, caspase-, or
trypsin-like reagent mixtures were added to initiate the biochemical reaction. The reaction was allowed
to proceed at room temperature for 60 min, after which the luminescence was read. Data were acquired
from 4 independent replicates (n � 4). Relative luminescence unit (RLU) data were normalized to percent
inhibition values relative to 100% effect (DMSO, 1% [vol/vol] final assay concentration in the absence of
T. cruzi proteasome enzyme) and 0% effect (DMSO, 1% [vol/vol] final assay concentration with T. cruzi
proteasome enzyme) control populations using Microsoft Excel 2013 software. IC50 values were calcu-
lated by fitting the concentration-response data for each independent replicate separately to either a
four-parameter logistic model or a seven-parameter logistic model with the bottom curve plateau
parameter constrained to zero, as shown below.

The four-parameter logistic model is as follows:

y � Min �
Max 	 Min

1 � � x

IC50
�	Hillslope
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The seven-parameter logistic model is as follows:

y � �Max_1 � � Min 	 Max_1

1 � �� x

IC50_1�Hillslope_1	
� � �Max_2 	 � Max_2

1 � �� x

IC50_2�Hillslope_2	
�
The IC50 parameters were then used to calculate the pIC50 values using the following equation,

followed by a calculation of a mean pIC50 for each compound: pIC50 � {�log(IC50[M])}. Where biphasic
concentration-response curves were observed, pIC50 values for the dominant curve were reported.
Figures were generated by fitting the mean concentration-response data for each compound using the
above-mentioned models.

Cell-free concentration-response relationships using 20 �M and 600 �M substrate. The Proteasome-
Glo chymotrypsin-like assay (Promega; catalogue no. G8622) luciferin detection reagent (comprising
luciferase enzyme in Proteasome-Glo buffer) was prepared according to the manufacturer’s protocol (29).
A 1,200 �M (600 �M final assay concentration) and a 40 �M (20 �M final assay concentration) solution
of Proteasome-Glo chymotrypsin-like reagent were prepared using the luciferin detection reagent as a
diluent, and the mixtures were incubated at room temperature for 60 min. Partially purified stock T. cruzi
proteasome solution was diluted 1 in 4 (CMF � 0.25) using proteasome buffer, and 4 �l of the diluted
solution was added to various concentrations of oprozomib (Selleckchem; catalogue no. S7049) (12 final
assay concentrations ranging from 3.09 � 10–5 M to 1.11 � 10–9 M at 1-in-3 dilution increments). Next,
4 �l of either 40 �M or 1,200 �M Proteasome-Glo chymotrypsin-like reagent was added to initiate the
biochemical reaction. The reaction was allowed to proceed at room temperature for 60 min, after which
the luminescence was read. Data were acquired from 3 independent replicates (n � 3) and processed as
described above for the cell-free pIC50 determination experiments.

Cellular pEC50 determinations for commercial compounds. T. cruzi strain Silvio X10/7 epimastigotes
(25 �l at 5 � 105 cells/ml) were incubated at 28°C in 5% CO2 for 96 h in either a fixed concentration of control
compound (Nifurtimox; Sigma-Aldrich; catalogue no. N3415-25MG; 4.98 � 10–5 M final assay concentration)
or various concentrations of test compound (oprozomib, bortezomib, ixazomib, MG132, MG115, and epox-
omicin; 10 final assay concentrations ranging from 4.98 � 10–5 M to 2.49 � 10–9 M at 1-in-3 dilution
increments). For the cell viability readout, BacTiter-Glo microbial cell viability reagent (Promega; catalogue no.
G8230) was added to each well (25 �l) and incubated at room temperature for 5 min. The plates were then
sealed with clear film, and the luminescence was read using a Victor 3 (PerkinElmer, USA) or Pherastar FS (BMG
Labtech, Germany) plate reader with a 0.5-s per well reading time. Data for epoxomicin were obtained from
three independent replicates (n � 3), and data for all the remaining compounds were acquired from four
independent replicates (n � 4). RLU data were normalized to percent inhibition values relative to 100% effect
(Nifurtimox) and 0% effect (DMSO; 1% [vol/vol] final assay concentration) control populations. Normalized
data for each independent replicate were fitted separately to a four-parameter logistic regression model, and
pEC50 {i.e., �log(EC50[M])} values were calculated using IBDS ActivityBase 8.1.2.12 software, after which a mean
pEC50 value for each compound was calculated.

Secondary counterscreen assay development. In order to identify the optimum amount of amino-
luciferin substrate (Stratech; catalogue no. 13415-AAT) for screening, a 20 �M solution (10 �M final assay
concentration) of substrate was prepared and subsequently serially diluted (1 in 2; CMF � 0.5) using the
proteasome buffer to generate 10 additional concentrations. To test the dependence of the assay on
exogenous ATP, 10 �M aminoluciferin substrate solutions (5 �M final assay concentration) were also
prepared in proteasome buffer either lacking ATP (buffer A) or containing 4 mM ATP (buffer B). Next, 4
�l of each of the substrate solutions was added to 4 �l of luciferin detection reagent. Luminescence was
read immediately and then every 90 s for 75 min. Data were acquired from 5 technical replicates for each
experiment (n � 5).

High-throughput screening test studies. To test assay sensitivity, specificity, and suitability in a
high-throughput format, partially purified stock T. cruzi proteasome solution was diluted 1 in 8 (CMF �
0.125) using proteasome buffer, and 4 �l of the diluted solution was added to two assay plates
containing bortezomib (Selleckchem; catalogue no. S1013). The bortezomib was randomly distributed
across a total of 22 positions per plate at final assay concentrations approximately equivalent to the IC70

(79 nM; DMSO, 1% [vol/vol]), IC50 (17 nM; DMSO, 1% [vol/vol]), and IC30 (4 nM; DMSO, 1% [vol/vol]) values
for the compound. With the exception of the control columns, all the remaining plate wells contained
DMSO only (1% [vol/vol] final assay concentration). The plates were allowed to incubate at room
temperature for 60 min, after which 4 �l of Proteasome-Glo chymotrypsin-like reagent was added to
initiate the biochemical reaction. The reaction was allowed to proceed at room temperature for 60 min,
after which the luminescence was read. RLU values were normalized to percent inhibition values relative
to 100% effect (10 �M bortezomib and DMSO, 1% [vol/vol] final assay concentrations) and 0% effect
(DMSO, 1% [vol/vol] final assay concentration) control populations using Microsoft Excel 2013 software.
A hit identification threshold of 30% inhibition was set, and the percent sensitivity and percent specificity
were calculated using the following equations: percent sensitivity � [TP/(TP � FN)] � 100, where TP is
true positive and FN is false negative, and percent specificity � [TN/(FP � TN)] � 100, where TN is true
negative and FP is false positive.

Single-point high-throughput screening. In the case of the primary assay, 4 �l of partially
purified T. cruzi proteasome that was diluted 1 in 8 (CMF � 0.125) from the original stock using
proteasome buffer was added to assay plates containing either technology interference nuisance
compounds (1,027 compounds; 10 �M and, for DMSO, 1% [vol/vol] final assay concentrations) or
structurally diverse compounds exploring drug-like chemical space from the Dundee Drug Discovery
Unit library (9,257 compounds) and Global Health Chemical Diversity Library (GHCDL) (8,841
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compounds) (9.4 �M and, for DMSO, 1% [vol/vol] final assay concentrations). The plates were
allowed to incubate at room temperature for 60 min, after which 4 �l of luciferin detection and
Proteasome-Glo chymotrypsin-like reagent mixture was added to initiate the biochemical reaction.
The reaction was allowed to proceed at room temperature for 60 min, after which the luminescence
was read. For the secondary counterscreen assay, 4 �l of 10 �M aminoluciferin solution (5 �M final
assay concentration) formulated in proteasome buffer was added to the compound-containing assay
plates, followed by 4 �l of luciferin detection reagent to initiate the biochemical reaction. The plates
were allowed to incubate at room temperature for 60 min, after which the luminescence was read.
RLU values were normalized to percent inhibition values relative to 100% effect (9.4 �M bortezomib
and 1% [vol/vol] DMSO final assay concentrations for the primary assay and 1% [vol/vol] DMSO in
the absence of luciferase detection reagent for the secondary counterscreening assay) and 0% effect
(DMSO, 1% [vol/vol] final assay concentration) control populations. For the nuisance compound set,
primary assay screening data were acquired from 2 independent replicates (n � 2), while the
secondary assay counterscreen data were acquired from a single replicate (n � 1). For initial
single-point high-throughput screening of the two diversity compound sets, data were acquired
from a single replicate (n � 1) and follow-up screening data on identified hits using both the primary
and secondary counterscreen assays were acquired for two independent replicates (n � 2). Com-
pounds exhibiting �30% and �45% inhibition in the primary and secondary counterscreen assays,
respectively, were identified as hits. Data were processed using IBDS ActivityBase 8.1.2.12 and
Dotmatics Limited Vortex v2017.08.69598-59-s software.

Hit compound cell-free pIC50 determinations. Primary screen and secondary counterscreen
biochemical assays were performed as described above for the single-point high-throughput
screening experiments using assay plates containing various concentrations of compound (10 final
assay concentrations ranging from 9.90 � 10–5 M to 5.52 � 10–9 M at 1-in-3 dilution increments).
Data were acquired from 2 independent replicates (n � 2) for both the primary and counterscreen
assays and were subsequently processed using IBDS ActivityBase 8.1.2.12 and Dotmatics Limited
Vortex v2017.08.69598-59-s software. pIC50 values were determined by fitting the data to a four-
parameter logistic model.

Ancillary information. The supplemental material includes fraction testing of the T. cruzi protea-
some, chymotrypsin-like activity in the presence of different concentrations of DMSO, cell-free pIC50 and
cellular pEC50 values for commercial inhibitors, concentration-response curves for oprozomib in the
presence of low and high substrate, primary biochemical assay sensitivity and specificity calculations, a
high-throughput screen of nuisance set compounds, pIC50 correlation plots for primary and secondary
counterscreen assay replicates, structures of 39 hit compounds, and primary assay pIC50 values for the
39 hit compounds.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/AAC

.00309-19.
SUPPLEMENTAL FILE 1, PDF file, 0.5 MB.
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