793 research outputs found

    Prepotentials for local mirror symmetry via Calabi-Yau fourfolds

    Full text link
    In this paper, we first derive an intrinsic definition of classical triple intersection numbers of K_S, where S is a complex toric surface, and use this to compute the extended Picard-Fuchs system of K_S of our previous paper, without making use of the instanton expansion. We then extend this formalism to local fourfolds K_X, where X is a complex 3-fold. As a result, we are able to fix the prepotential of local Calabi-Yau threefolds K_S up to polynomial terms of degree 2. We then outline methods of extending the procedure to non canonical bundle cases.Comment: 42 pages, 7 figures. Expanded, reorganized, and added a theoretical background for the calculation

    Density classification on infinite lattices and trees

    Full text link
    Consider an infinite graph with nodes initially labeled by independent Bernoulli random variables of parameter p. We address the density classification problem, that is, we want to design a (probabilistic or deterministic) cellular automaton or a finite-range interacting particle system that evolves on this graph and decides whether p is smaller or larger than 1/2. Precisely, the trajectories should converge to the uniform configuration with only 0's if p1/2. We present solutions to that problem on the d-dimensional lattice, for any d>1, and on the regular infinite trees. For Z, we propose some candidates that we back up with numerical simulations

    A recent rebuilding of most spirals ?

    Full text link
    Re-examination of the properties of distant galaxies leads to the evidence that most present-day spirals have built up half of their stellar masses during the last 8 Gyr, mostly during several intense phases of star formation during which they took the appearance of luminous infrared galaxies (LIRGs). Distant galaxy morphologies encompass all of the expected stages of galaxy merging, central core formation and disk growth, while their cores are much bluer than those of present-day bulges. We have tested a spiral rebuilding scenario, for which 75+/-25% of spirals have experienced their last major merger event less than 8 Gyr ago. It accounts for the simultaneous decreases, during that period, of the cosmic star formation density, of the merger rate, of the number densities of LIRGs and of compact galaxies, while the densities of ellipticals and large spirals are essentially unaffected.Comment: (1) GEPI, Obs. Meudon, France ;(2)Max-Planck Institut fuer Astronomie, Germany (3) National Astronomical Observatories, CAS, China. Five pages, 1 figure. To be published in "Starbursts: From 30 Doradus to Lyman Break Galaxies", held in Cambridge, ed. R. de Grijs & R. M. Gonzalez Delgado (Dordrecht: Kluwer

    Charge-density wave formation in Sr_{14}Cu_{24}O_{41}

    Full text link
    The electrodynamic response of the spin-ladder compound Sr14x_{14-x}Cax_xCu24_{24}O41_{41} (x=0,3,9x=0, 3, 9) has been studied from radiofrequencies up to the infrared. At temperatures below 250 K a pronounced absorption peak appears around 12 cm1^{-1} in Sr14_{14}Cu24_{24}O41_{41} for the radiation polarized along the chains/ladders (Ec{\bf E}\parallel {\bf c}). In addition a strongly temperature dependent dielectric relaxation is observed in the kHz - MHz range. We explain this behavior by a charge density wave which develops in the ladders sub-system and produces a mode pinned at 12 cm1^{-1}. With increasing Ca doping the mode shifts up in frequency and eventually disappears for x=9x=9 because the dimensionality of the system crosses over from one to two dimensions, giving way to the superconducting ground state under pressure.Comment: One name added to author list 4 pages, 2 figures, email: [email protected]

    Multi-Channel Kondo Necklace

    Full text link
    A multi--channel generalization of Doniach's Kondo necklace model is formulated, and its phase diagram studied in the mean--field approximation. Our intention is to introduce the possible simplest model which displays some of the features expected from the overscreened Kondo lattice. The NN conduction electron channels are represented by NN sets of pseudospins \vt_{j}, j=1,...,Nj=1, ... , N, which are all antiferromagnetically coupled to a periodic array of |\vs|=1/2 spins. Exploiting permutation symmetry in the channel index jj allows us to write down the self--consistency equation for general NN. For N>2N>2, we find that the critical temperature is rising with increasing Kondo interaction; we interpret this effect by pointing out that the Kondo coupling creates the composite pseudospin objects which undergo an ordering transition. The relevance of our findings to the underlying fermionic multi--channel problem is discussed.Comment: 29 pages (2 figures upon request from [email protected]), LATEX, submitted for publicatio

    Phase diagram of the one-dimensional extended attractive Hubbard model for large nearest-neighbor repulsion

    Full text link
    We consider the extended Hubbard model with attractive on-site interaction U and nearest-neighbor repulsions V. We construct an effective Hamiltonian H_{eff} for hopping t<<V and arbitrary U<0. Retaining the most important terms, H_{eff} can be mapped onto two XXZ models, solved by the Bethe ansatz. The quantum phase diagram shows two Luttinger liquid phases and a region of phase separation between them. For density n<0.422 and U<-4, singlet superconducting correlations dominate at large distances. For some parameters, the results are in qualitative agreement with experiments in BaKBiO.Comment: 6 pages, 3 figures, submitted to Phys. Rev.

    A Fermi Surface study of Ba1x_{1-x}Kx_{x}BiO3_{3}

    Full text link
    We present all electron computations of the 3D Fermi surfaces (FS's) in Ba1x_{1-x}Kx_{x}BiO3_{3} for a number of different compositions based on the selfconsistent Korringa-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) approach for incorporating the effects of Ba/K substitution. By assuming a simple cubic structure throughout the composition range, the evolution of the nesting and other features of the FS of the underlying pristine phase is correlated with the onset of various structural transitions with K doping. A parameterized scheme for obtaining an accurate 3D map of the FS in Ba1x_{1-x}Kx_{x}BiO3_{3} for an arbitrary doping level is developed. We remark on the puzzling differences between the phase diagrams of Ba1x_{1-x}Kx_{x}BiO3_{3} and BaPbx_{x}Bi1x_{1-x}O3_{3} by comparing aspects of their electronic structures and those of the end compounds BaBiO3_{3}, KBiO3_3 and BaPbO3_3. Our theoretically predicted FS's in the cubic phase are relevant for analyzing high-resolution Compton scattering and positron-annihilation experiments sensitive to the electron momentum density, and are thus amenable to substantial experimental verification.Comment: 12 pages, 7 figures, to appear in Phys. Rev.

    Topological (Sliced) Doping of a 3D Peierls System: Predicted Structure of Doped BaBiO3

    Full text link
    At hole concentrations below x=0.4, Ba_(1-x)K_xBiO_3 is non-metallic. At x=0, pure BaBiO3 is a Peierls insulator. Very dilute holes create bipolaronic point defects in the Peierls order parameter. Here we find that the Rice-Sneddon version of Peierls theory predicts that more concentrated holes should form stacking faults (two-dimensional topological defects, called slices) in the Peierls order parameter. However, the long-range Coulomb interaction, left out of the Rice-Sneddon model, destabilizes slices in favor of point bipolarons at low concentrations, leaving a window near 30% doping where the sliced state is marginally stable.Comment: 6 pages with 5 embedded postscript figure

    Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy

    Full text link
    We review HB stars in a broad astrophysical context, including both variable and non-variable stars. A reassessment of the Oosterhoff dichotomy is presented, which provides unprecedented detail regarding its origin and systematics. We show that the Oosterhoff dichotomy and the distribution of globular clusters (GCs) in the HB morphology-metallicity plane both exclude, with high statistical significance, the possibility that the Galactic halo may have formed from the accretion of dwarf galaxies resembling present-day Milky Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the second-parameter problem is presented. A technique is proposed to estimate the HB types of extragalactic GCs on the basis of integrated far-UV photometry. The relationship between the absolute V magnitude of the HB at the RR Lyrae level and metallicity, as obtained on the basis of trigonometric parallax measurements for the star RR Lyrae, is also revisited, giving a distance modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are studied. Finally, the conductive opacities used in evolutionary calculations of low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and Space Scienc

    The Local Bubble and Interstellar Material Near the Sun

    Get PDF
    The properties of interstellar matter (ISM) at the Sun are regulated by our location with respect to the Local Bubble (LB) void in the ISM. The LB is bounded by associations of massive stars and fossil supernovae that have disrupted natal ISM and driven intermediate velocity ISM into the LB interior void. The Sun is located in such a driven ISM parcel. The Local Fluff has a bulk velocity of 19 km/s in the LSR, and an upwind direction towards the center of the gas and dust ring formed by the Loop I supernova remnant interaction with the LB. When the ram pressure of the LIC is included in the total LIC pressure, and if magnetic thermal and cosmic ray pressures are similar, the LIC appears to be in pressure equilibrium with the local hot bubble plasma.Comment: Proceedings of Symposium on the Composition of Matter, honoring Johannes Geiss on the occasion of his 80th birthday. Space Science Reviews (in press
    corecore