40,575 research outputs found

    Central Exclusive Di-jet Production at the Tevatron

    Full text link
    We perform a phenomenological analysis of dijet production in double pomeron exchange at the Tevatron. We find that the CDF Run I results do not rule out the presence of an exclusive dijet component, as predicted by Khoze, Martin and Ryskin (KMR). With the high statistics CDF Run II data, we predict that an exclusive component at the level predicted by KMR may be visible, although the observation will depend on accurate modelling of the inclusive double pomeron exchange process. We also compare to the predictions of the DPEMC Monte Carlo, which contains a non-perturbative model for the central exclusive process. We show that the perturbative model of KMR gives different predictions for the di-jet ET dependence in the high di-jet mass fraction region than non-perturbative models.Comment: 17 pages, 15 figure

    A laboratory investigation of the variability of cloud reflected radiance fields

    Get PDF
    A method to determine the radiative properties of complex cloud fields was developed. A Cloud field optical simulator (CFOS) was constructed to simulate the interaction of cloud fields with visible radiation. The CFOS was verified by comparing experimental results from it with calculations performed with a Monte Carlo radiative transfer model. A software library was developed to process, reduce, and display CFOS data. The CFSOS was utilized to study the reflected radiane patterns from simulated cloud fields

    Stereospecific synthesis of the aglycone of pseudopterosin E

    Get PDF
    No description supplie

    Supernova Remnant in a Stratified Medium: Explicit, Analytical Approximations for Adiabatic Expansion and Radiative Cooling

    Get PDF
    We propose simple, explicit, analytical approximations for the kinematics of an adiabatic blast wave propagating in an exponentially stratified ambient medium, and for the onset of radiative cooling, which ends the adiabatic era. Our method, based on the Kompaneets implicit solution and the Kahn approximation for the radiative cooling coefficient, gives straightforward estimates for the size, expansion velocity, and progression of cooling times over the surface, when applied to supernova remnants (SNRs). The remnant shape is remarkably close to spherical for moderate density gradients, but even a small gradient in ambient density causes the cooling time to vary substantially over the remnant's surface, so that for a considerable period there will be a cold dense expanding shell covering only a part of the remnant. Our approximation provides an effective tool for identifying the approximate parameters when planning 2-dimensional numerical models of SNRs, the example of W44 being given in a subsequent paper.Comment: ApJ accepted, 11 pages, 2 figures embedded, aas style with ecmatex.sty and lscape.sty package

    Knowlesi malaria in Vietnam

    Get PDF
    The simian malaria parasite Plasmodium knowlesi is transmitted in the forests of Southeast Asia. Symptomatic zoonotic knowlesi malaria in humans is widespread in the region and is associated with a history of spending time in the jungle. However, there are many settings where knowlesi transmission to humans would be expected but is not found. A recent report on the Ra-glai population of southern central Vietnam is taken as an example to help explain why this may be so

    The Spaceborne Global Climate Observing Center (SGCOC): Executive summary

    Get PDF
    Conceptual planning of the Spaceborne portion of the Global Climate Observing Systems (SGCOS) is reviewed. Fundamentals of the SGCOS are summarized

    Perturbations in the Kerr-Newman Dilatonic Black Hole Background: I. Maxwell waves

    Get PDF
    In this paper we analyze the perturbations of the Kerr-Newman dilatonic black hole background. For this purpose we perform a double expansion in both the background electric charge and the wave parameters of the relevant quantities in the Newman-Penrose formalism. We then display the gravitational, dilatonic and electromagnetic equations, which reproduce the static solution (at zero order in the wave parameter) and the corresponding wave equations in the Kerr background (at first order in the wave parameter and zero order in the electric charge). At higher orders in the electric charge one encounters corrections to the propagations of waves induced by the presence of a non-vanishing dilaton. An explicit computation is carried out for the electromagnetic waves up to the asymptotic form of the Maxwell field perturbations produced by the interaction with dilatonic waves. A simple physical model is proposed which could make these perturbations relevant to the detection of radiation coming from the region of space near a black hole.Comment: RevTeX, 36 pages in preprint style, 1 figure posted as a separate PS file, submitted to Phys. Rev.

    Pressure-Induced Insulating State in Ba1-xRExIrO3 (RE = Gd, Eu) Single Crystals

    Full text link
    BaIrO3 is a novel insulator with coexistent weak ferromagnetism, charge and spin density wave. Dilute RE doping for Ba induces a metallic state, whereas application of modest pressure readily restores an insulating state characterized by a three-order-of-magnitude increase of resistivity. Since pressure generally increases orbital overlap and broadens energy bands, a pressure-induced insulating state is not commonplace. The profoundly dissimilar responses of the ground state to light doping and low hydrostatic pressures signal an unusual, delicate interplay between structural and electronic degrees of freedom in BaIrO3
    corecore