32,347 research outputs found
Implications of Hydrocarbon and Helium Gas Analyses of Springs from the Ouachita Mountains, Arkansas
One hundred and three ground water samples (predominantly springs) were analyzed for headspace light hydrocarbon gases and helium. Four of the formations (Arkansas Novaculite, Bigfork Chert, Stanley Shale, and Womble) having the highest mean methane values are the only Ouachita Mountain facies to produce petroleum or exhibit marginally commercial production. This observation suggests that the mean methane values are useful as an indication of the relative hydrocarbon content of these formations Anomalous helium values are generally associated with mapped faults
Comment on ``Consistency, amplitudes and probabilities in quantum theory'' by A. Caticha
A carefully written paper by A. Caticha [Phys. Rev. A57, 1572 (1998)] applies
consistency arguments to derive the quantum mechanical rules for compounding
probability amplitudes in much the same way as earlier work by the present
author [J. Math. Phys. 29, 398 (1988) and Int. J. Theor. Phys. 27, 543 (1998)].
These works are examined together to find the minimal assumptions needed to
obtain the most general results
New method for critical failure prediction of complex systems
Rigorous analytical technique, called criticality determination methodology /or CD technique/ determines the probability that a given complex system will successfully achieve stated objectives. The CD technique identifies critical elements of the system by a failure mode and effects analysis
Anomalous aging phenomena caused by drift velocities
We demonstrate via several examples that a uniform drift velocity gives rise
to anomalous aging, characterized by a specific form for the two-time
correlation functions, in a variety of statistical-mechanical systems far from
equilibrium. Our first example concerns the oscillatory phase observed recently
in a model of competitive learning. Further examples, where the proposed theory
is exact, include the voter model and the Ohta-Jasnow-Kawasaki theory for
domain growth in any dimension, and a theory for the smoothing of sandpile
surfaces.Comment: 7 pages, 3 figures. To appear in Europhysics Letter
Seidel elements and mirror transformations
The goal of this article is to give a precise relation between the mirror
symmetry transformation of Givental and the Seidel elements for a smooth
projective toric variety with nef. We show that the Seidel elements
entirely determine the mirror transformation and mirror coordinates.Comment: 36 pages. We corrected several issues as pointed out by the refere
Asymmetric polarity reversals, bimodal field distribution, and coherence resonance in a spherically symmetric mean-field dynamo model
Using a mean-field dynamo model with a spherically symmetric helical
turbulence parameter alpha which is dynamically quenched and disturbed by
additional noise, the basic features of geomagnetic polarity reversals are
shown to be generic consequences of the dynamo action in the vicinity of
exceptional points of the spectrum. This simple paradigmatic model yields long
periods of constant polarity which are interrupted by self-accelerating field
decays leading to asymmetric polarity reversals. It shows the recently
discovered bimodal field distribution, and it gives a natural explanation of
the correlation between polarity persistence time and field strength. In
addition, we find typical features of coherence resonance in the dependence of
the persistence time on the noise.Comment: 5 pages, 7 figure
Submillimetre galaxies in a hierarchical universe: number counts, redshift distribution and implications for the IMF
High-redshift submillimetre galaxies (SMGs) are some of the most rapidly star-forming galaxies in the Universe. Historically, galaxy formation models have had difficulty explaining the observed number counts of SMGs. We combine a semi-empirical model with 3D hydrodynamical simulations and 3D dust radiative transfer to predict the number counts of unlensed SMGs. Because the stellar mass functions, gas and dust masses, and sizes of our galaxies are constrained to match observations, we can isolate uncertainties related to the dynamical evolution of galaxy mergers and the dust radiative transfer. The number counts and redshift distributions predicted by our model agree well with observations. Isolated disc galaxies dominate the faint (S_(1.1) ≲ 1 or S_(850) ≲ 2 mJy) population. The brighter sources are a mix of merger-induced starbursts and galaxy-pair SMGs; the latter subpopulation accounts for ∼30–50 per cent of all SMGs at all S_(1.1) ≳ 0.5 mJy (S_(850) ≳ 1 mJy). The mean redshifts are ∼3.0–3.5, depending on the flux cut, and the brightest sources tend to be at higher redshifts. Because the galaxy-pair SMGs will be resolved into multiple fainter sources by the Atacama Large Millimeter/submillimeter Array (ALMA), the bright ALMA counts should be as much as two times less than those observed using single-dish telescopes. The agreement between our model, which uses a Kroupa initial mass function (IMF), and observations suggests that the IMF in high-redshift starbursts need not be top heavy; if the IMF were top heavy, our model would overpredict the number counts. We conclude that the difficulty some models have reproducing the observed SMG counts is likely indicative of more general problems – such as an underprediction of the abundance of massive galaxies or a star formation rate and stellar mass relation normalization lower than that observed – rather than a problem specific to the SMG population
An investigation into linearity with cumulative emissions of the climate and carbon cycle response in HadCM3LC
We investigate the extent to which global mean temperature, precipitation, and the carbon cycle are constrained by cumulative carbon emissions throughout four experiments with a fully coupled climate-carbon cycle model. The two paired experiments adopt contrasting, idealised approaches to climate change mitigation at different action points this century, with total emissions exceeding two trillion tonnes of carbon in the later pair. Their initially diverging cumulative emissions trajectories cross after several decades, before diverging again. We find that their global mean temperatures are, to first order, linear with cumulative emissions, though regional differences in temperature of up to 1.5K exist when cumulative emissions of each pair coincide. Interestingly, although the oceanic precipitation response scales with cumulative emissions, the global precipitation response does not, due to a decrease in precipitation over land above cumulative emissions of around one trillion tonnes of carbon (TtC). Most carbon fluxes and stores are less well constrained by cumulative emissions as they reach two trillion tonnes. The opposing mitigation approaches have different consequences for the Amazon rainforest, which affects the linearity with which the carbon cycle responds to cumulative emissions. Averaged over the two fixed-emissions experiments, the transient response to cumulative carbon emissions (TCRE) is 1.95 K TtC-1, at the upper end of the IPCC’s range of 0.8-2.5 K TtC-1
- …