38 research outputs found

    Opto-Mechanical Design of ShaneAO: the Adaptive Optics System for the 3-meter Shane Telescope

    Full text link
    A Cassegrain mounted adaptive optics instrument presents unique challenges for opto-mechanical design. The flexure and temperature tolerances for stability are tighter than those of seeing limited instruments. This criteria requires particular attention to material properties and mounting techniques. This paper addresses the mechanical designs developed to meet the optical functional requirements. One of the key considerations was to have gravitational deformations, which vary with telescope orientation, stay within the optical error budget, or ensure that we can compensate with a steering mirror by maintaining predictable elastic behavior. Here we look at several cases where deformation is predicted with finite element analysis and Hertzian deformation analysis and also tested. Techniques used to address thermal deformation compensation without the use of low CTE materials will also be discussed.Comment: 14 pages, 14 figures, 4 tables. Presented at SPIE Astronomical Telescopes + Instrumentation conference, paper 9148-11

    The Keck Cosmic Web Imager: a capable new integral field spectrograph for the W. M. Keck Observatory

    Get PDF
    The Keck Cosmic Web Imager (KCWI) is a new facility instrument being developed for the W. M. Keck Observatory and funded for construction by the Telescope System Instrumentation Program (TSIP) of the National Science Foundation (NSF). KCWI is a bench-mounted spectrograph for the Keck II right Nasmyth focal station, providing integral field spectroscopy over a seeing-limited field up to 20"x33" in extent. Selectable Volume Phase Holographic (VPH) gratings provide high efficiency and spectral resolution in the range of 1000 to 20000. The dual-beam design of KCWI passed a Preliminary Design Review in summer 2011. The detailed design of the KCWI blue channel (350 to 700 nm) is now nearly complete, with the red channel (530 to 1050 nm) planned for a phased implementation contingent upon additional funding. KCWI builds on the experience of the Caltech team in implementing the Cosmic Web Imager (CWI), in operation since 2009 at Palomar Observatory. KCWI adds considerable flexibility to the CWI design, and will take full advantage of the excellent seeing and dark sky above Mauna Kea with a selectable nod-and-shuffle observing mode. In this paper, models of the expected KCWI sensitivity and background subtraction capability are presented, along with a detailed description of the instrument design. The KCWI team is lead by Caltech (project management, design and implementation) in partnership with the University of California at Santa Cruz (camera optical and mechanical design) and the W. M. Keck Observatory (program oversight and observatory interfaces)

    Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance.

    Get PDF
    Insulin resistance in muscle, adipocytes and liver is a gateway to a number of metabolic diseases. Here, we show a selective deficiency in mitochondrial coenzyme Q (CoQ) in insulin-resistant adipose and muscle tissue. This defect was observed in a range of in vitro insulin resistance models and adipose tissue from insulin-resistant humans and was concomitant with lower expression of mevalonate/CoQ biosynthesis pathway proteins in most models. Pharmacologic or genetic manipulations that decreased mitochondrial CoQ triggered mitochondrial oxidants and insulin resistance while CoQ supplementation in either insulin-resistant cell models or mice restored normal insulin sensitivity. Specifically, lowering of mitochondrial CoQ caused insulin resistance in adipocytes as a result of increased superoxide/hydrogen peroxide production via complex II. These data suggest that mitochondrial CoQ is a proximal driver of mitochondrial oxidants and insulin resistance, and that mechanisms that restore mitochondrial CoQ may be effective therapeutic targets for treating insulin resistance

    Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance

    Get PDF
    Insulin resistance in muscle, adipocytes and liver is a gateway to a number of metabolic diseases. Here, we show a selective deficiency in mitochondrial coenzyme Q (CoQ) in insulin-resistant adipose and muscle tissue. This defect was observed in a range of in vitro insulin resistance models and adipose tissue from insulin-resistant humans and was concomitant with lower expression of mevalonate/CoQ biosynthesis pathway proteins in most models. Pharmacologic or genetic manipulations that decreased mitochondrial CoQ triggered mitochondrial oxidants and insulin resistance while CoQ supplementation in either insulin-resistant cell models or mice restored normal insulin sensitivity. Specifically, lowering of mitochondrial CoQ caused insulin resistance in adipocytes as a result of increased superoxide/hydrogen peroxide production via complex II. These data suggest that mitochondrial CoQ is a proximal driver of mitochondrial oxidants and insulin resistance, and that mechanisms that restore mitochondrial CoQ may be effective therapeutic targets for treating insulin resistance

    Trends in use of intraosseous and intravenous access in out-of-hospital cardiac arrest across English ambulance services : a registry-based, cohort study

    Get PDF
    Introduction: The optimum route for drug administration in cardiac arrest is unclear. Recent data suggest that use of the intraosseous route may be increasing. This study aimed to explore changes over time in use of the intraosseous and intravenous drug routes in out-of-hospital cardiac arrest in England. Methods: We extracted data from the UK Out-of-Hospital Cardiac Arrest Outcomes registry. We included adult out-of-hospital cardiac arrest patients between 2015–2020 who were treated by an English Emergency Medical Service that submitted vascular access route data to the registry. The primary outcome was any use of the intraosseous route during cardiac arrest. We used logistic regression models to describe the association between time (calendar month) and intraosseous use. Results: We identified 75,343 adults in cardiac arrest treated by seven Emergency Medical Service systems between January 2015 and December 2020. The median age was 72 years, 64% were male and 23% presented in a shockable rhythm. Over the study period, the percentage of patients receiving intraosseous access increased from 22.8% in 2015 to 42.5% in 2020. For each study-month, the odds of receiving any intraosseous access increased by 1.019 (95% confidence interval 1.019 to 1.020, p < 0.001). This observed effect was consistent across sensitivity analyses. We observed a corresponding decrease in use of intravenous access. Conclusion: In England, the use of intraosseous access in out-of-hospital cardiac arrest has progressively increased over time. There is an urgent need for randomised controlled trials to evaluate the clinical effectiveness of the different vascular access routes in cardiac arrest

    Keck Planet Finder: design updates

    Get PDF
    The Keck Planet Finder (KPF) is a fiber-fed, high-resolution, high-stability spectrometer in development at the UC Berkeley Space Sciences Laboratory for the W.M. Keck Observatory. KPF is designed to characterize exoplanets via Doppler spectroscopy with a goal of a single measurement precision of 0.3 m s-1 or better, however its resolution and stability will enable a wide variety of astrophysical pursuits. Here we provide post-preliminary design review design updates for several subsystems, including: the main spectrometer, the fabrication of the Zerodur optical bench; the data reduction pipeline; fiber agitator; fiber cable design; fiber scrambler; VPH testing results and the exposure meter
    corecore