3,566 research outputs found

    Identification and separation of DNA mixtures using peak area information

    Get PDF
    We introduce a new methodology, based upon probabilistic expert systems, for analysing forensic identification problems involving DNA mixture traces using quantitative peak area information. Peak area is modelled with conditional Gaussian distributions. The expert system can be used for ascertaining whether individuals, whose profiles have been measured, have contributed to the mixture. It can also be used to predict DNA profiles of unknown contributors by separating the mixture into its individual components. The potential of our probabilistic methodology is illustrated on case data examples and compared with alternative approaches. The advantages are that identification and separation issues can be handled in a unified way within a single probabilistic model and the uncertainty associated with the analysis is quantified. Further work, required to bring the methodology to a point where it could be applied to the routine analysis of casework, is discussed.

    Probabilistic expert systems for handling artifacts in complex DNA mixtures

    Get PDF
    This paper presents a coherent probabilistic framework for taking account of allelic dropout, stutter bands and silent alleles when interpreting STR DNA profiles from a mixture sample using peak size information arising from a PCR analysis. This information can be exploited for evaluating the evidential strength for a hypothesis that DNA from a particular person is present in the mixture. It extends an earlier Bayesian network approach that ignored such artifacts. We illustrate the use of the extended network on a published casework example

    Estimation of Parameters in DNA Mixture Analysis

    Full text link
    In Cowell et al. (2007), a Bayesian network for analysis of mixed traces of DNA was presented using gamma distributions for modelling peak sizes in the electropherogram. It was demonstrated that the analysis was sensitive to the choice of a variance factor and hence this should be adapted to any new trace analysed. In the present paper we discuss how the variance parameter can be estimated by maximum likelihood to achieve this. The unknown proportions of DNA from each contributor can similarly be estimated by maximum likelihood jointly with the variance parameter. Furthermore we discuss how to incorporate prior knowledge about the parameters in a Bayesian analysis. The proposed estimation methods are illustrated through a few examples of applications for calculating evidential value in casework and for mixture deconvolution
    corecore