505 research outputs found

    Evolution and stability of a magnetic vortex in small cylindrical ferromagnetic particle under applied field

    Full text link
    The energy of a displaced magnetic vortex in a cylindrical particle made of isotropic ferromagnetic material (magnetic dot) is calculated taking into account the magnetic dipolar and the exchange interactions. Under the simplifying assumption of small dot thickness the closed-form expressions for the dot energy is written in a non-perturbative way as a function of the coordinate of the vortex center. Then, the process of losing the stability of the vortex under the influence of the externally applied magnetic field is considered. The field destabilizing the vortex as well as the field when the vortex energy is equal to the energy of a uniformly magnetized state are calculated and presented as a function of dot geometry. The results (containing no adjustable parameters) are compared to the recent experiment and are in good agreement.Comment: 4 pages, 2 figures, RevTe

    Role of micronutrients in HIV infection

    Get PDF
    More than 60% of the estimated 40 million persons with HIV/AIDS worldwide live in sub-Saharan Africa, where poverty, social insecurity, food shortages and malnutrition are major problems.1 In children under the age of 5 years, who live in developing countries, malnutrition has been associated with 50% of the 10.8 million deaths mainly caused by neonatal disorders, diarrhoea, pneumonia, malaria and HIV/AIDS.2 Likewise micronutrient deficiencies are widespread and are associated with increased morbidity and mortality particularly in relation to infectious diseases.3 This review focuss on the interaction between micronutrients and HIV/AIDS and discusses recent research findings that may have important public health implications in terms of the case management of persons with HIV/AIDS Southern African Journal of HIV Medicine Vol. 6 (2) 2005: pp. 18-2

    Dietary nitrate increases arginine availability and protects mitochondrial complex I and energetics in the hypoxic rat heart

    Get PDF
    This is the final version. It was first published by Wiley in The Journal of Physiology at http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2014.275263/abstract.Hypoxic exposure is associated with impaired cardiac energetics in humans and altered mitochondrial function, with suppressed complex I-supported respiration, in rat heart. This response might limit reactive oxygen species (ROS) generation, but at the cost of impaired electron transport chain (ETC) activity. Dietary nitrate supplementation improves mitochondrial efficiency and can promote tissue oxygenation by enhancing blood flow. We therefore hypothesised that ETC dysfunction, impaired energetics and oxidative damage in the hearts of rats exposed to chronic hypoxia could be alleviated by sustained administration of a moderate dose of dietary nitrate. Male Wistar rats (n=40) were given water supplemented with 0.7 mmol/L NaCl (as control) or 0.7 mmol/L NaNO3, elevating plasma nitrate levels by 80%, and were exposed to 13% O2 (hypoxia) or normoxia (n=10 per group) for 14 days. Respiration rates, ETC protein levels, mitochondrial density, ATP content and protein carbonylation were measured in cardiac muscle. Complex I respiration rates and protein levels were 33% lower in hypoxic/NaCl rats compared with normoxic/NaCl controls. Protein carbonylation was 65% higher in hearts of hypoxic rats compared with controls, indicating increased oxidative stress, whilst ATP levels were 62% lower. Respiration rates, complex I protein and activity, protein carbonylation and ATP levels were all fully protected in the hearts of nitrate-supplemented hypoxic rats. Both in normoxia and hypoxia, dietary nitrate suppressed cardiac arginase expression and activity and markedly elevated cardiac L-arginine concentrations, unmasking a novel mechanism of action by which nitrate enhances tissue NO bioavailability. Dietary nitrate therefore alleviates metabolic abnormalities in the hypoxic heart, improving myocardial energetics

    String Method for the Study of Rare Events

    Full text link
    We present a new and efficient method for computing the transition pathways, free energy barriers, and transition rates in complex systems with relatively smooth energy landscapes. The method proceeds by evolving strings, i.e. smooth curves with intrinsic parametrization whose dynamics takes them to the most probable transition path between two metastable regions in the configuration space. Free energy barriers and transition rates can then be determined by standard umbrella sampling technique around the string. Applications to Lennard-Jones cluster rearrangement and thermally induced switching of a magnetic film are presented.Comment: 4 pages, 4 figure

    Tunneling Anisotropic Magnetoresistance in Co/AlOx/Au Tunnel Junctions

    Full text link
    We observe spin-valve-like effects in nano-scaled thermally evaporated Co/AlOx/Au tunnel junctions. The tunneling magnetoresistance is anisotropic and depends on the relative orientation of the magnetization direction of the Co electrode with respect to the current direction. We attribute this effect to a two-step magnetization reversal and an anisotropic density of states resulting from spin-orbit interaction. The results of this study points to future applications of novel spintronics devices involving only one ferromagnetic layer.Comment: 11 pages, 5 figures. Accpted for publishing on Nano Letters, 200

    Symmetry effects on the static and dynamic properties of coupled magnetic oscillators

    Get PDF
    The effect of symmetry on the resonance spectra of antiferromagnetically coupled oscillators has attracted new interest with the discovery of symmetry-breaking induced anti-crossings. Here, we experimentally characterise the resonance spectrum of a synthetic antiferromagnet Pt/CoFeB/Ru/CoFeB/Pt, where we are able to independently tune the effective magnetisation of the two coupled magnets. To model our results we apply the mathematical methods of group theory to the solutions of the Landau Lifshitz Gilbert equation. This general approach, usually applied to quantum mechanical systems, allows us to identify the main features of the resonance spectrum in terms of symmetry breaking and to make a direct comparison with crystal antiferromagnets

    Quantum dynamics, dissipation, and asymmetry effects in quantum dot arrays

    Full text link
    We study the role of dissipation and structural defects on the time evolution of quantum dot arrays with mobile charges under external driving fields. These structures, proposed as quantum dot cellular automata, exhibit interesting quantum dynamics which we describe in terms of equations of motion for the density matrix. Using an open system approach, we study the role of asymmetries and the microscopic electron-phonon interaction on the general dynamical behavior of the charge distribution (polarization) of such systems. We find that the system response to the driving field is improved at low temperatures (and/or weak phonon coupling), before deteriorating as temperature and asymmetry increase. In addition to the study of the time evolution of polarization, we explore the linear entropy of the system in order to gain further insights into the competition between coherent evolution and dissipative processes.Comment: 11pages,9 figures(eps), submitted to PR

    Endothelial cell regulation of systemic haemodynamics and metabolism acts through the HIF transcription factors.

    Get PDF
    BackgroundThe vascular endothelium has important endocrine and paracrine roles, particularly in the regulation of vascular tone and immune function, and it has been implicated in the pathophysiology of a range of cardiovascular and inflammatory conditions. This study uses a series of transgenic murine models to explore for the first time the role of the hypoxia-inducible factors, HIF-1α and HIF-2α in the pulmonary and systemic circulations as potential regulators of systemic vascular function in normoxic or hypoxic conditions and in response to inflammatory stress. We developed a series of transgenic mouse models, the HIF-1α Tie2Cre, deficient in HIF1-α in the systemic and pulmonary vascular endothelium and the L1Cre, a pulmonary endothelium specific knockout of HIF-1α or HIF-2α. In vivo, arterial blood pressure and metabolic activity were monitored continuously in normal atmospheric conditions and following an acute stimulus with hypoxia (10%) or lipopolysaccharide (LPS). Ex vivo, femoral artery reactivity was assessed using wire myography.ResultsUnder normoxia, the HIF-1α Tie2Cre mouse had increased systolic and diastolic arterial pressure compared to litter mate controls over the day-night cycle under normal environmental conditions. VO2 and VCO2 were also increased. Femoral arteries displayed impaired endothelial relaxation in response to acetylcholine mediated by a reduction in the nitric oxide dependent portion of the response. HIF-1α L1Cre mice displayed a similar pattern of increased systemic blood pressure, metabolic rate and impaired vascular relaxation without features of pulmonary hypertension, polycythaemia or renal dysfunction under normal conditions. In response to acute hypoxia, deficiency of HIF-1α was associated with faster resolution of hypoxia-induced haemodynamic and metabolic compromise. In addition, systemic haemodynamics were less compromised by LPS treatment.ConclusionsThese data show that deficiency of HIF-1α in the systemic or pulmonary endothelium is associated with increased systemic blood pressure and metabolic rate, a pattern that persists in both normoxic conditions and in response to acute stress with potential implications for our understanding of the pathophysiology of vascular dysfunction in acute and chronic disease
    corecore