4 research outputs found
The Cryogenic Target for the G Experiment at Jefferson Lab
A cryogenic horizontal single loop target has been designed, built, tested
and operated for the G experiment in Hall C at Jefferson Lab. The target
cell is 20 cm long, the loop volume is 6.5 l and the target operates with the
cryogenic pump fully immersed in the fluid. The target has been designed to
operate at 30 Hz rotational pump speed with either liquid hydrogen or liquid
deuterium. The high power heat exchanger is able to remove 1000 W of heat from
the liquid hydrogen, while the nominal electron beam with current of 40 A
and energy of 3 GeV deposits about 320 W of heat into the liquid. The increase
in the systematic uncertainty due to the liquid hydrogen target is negligible
on the scale of a parity violation experiment. The global normalized yield
reduction for 40 A beam is about 1.5 % and the target density fluctuations
contribute less than 238 ppm (parts per million) to the total asymmetry width,
typically about 1200 ppm, in a Q bin.Comment: 27 pages, 14 figure
The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles
In the G0 experiment, performed at Jefferson Lab, the parity-violating
elastic scattering of electrons from protons and quasi-elastic scattering from
deuterons is measured in order to determine the neutral weak currents of the
nucleon. Asymmetries as small as 1 part per million in the scattering of a
polarized electron beam are determined using a dedicated apparatus. It consists
of specialized beam-monitoring and control systems, a cryogenic hydrogen (or
deuterium) target, and a superconducting, toroidal magnetic spectrometer
equipped with plastic scintillation and aerogel Cerenkov detectors, as well as
fast readout electronics for the measurement of individual events. The overall
design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method
The G0 experiment: Apparatus for parity-violating electron scattering measurements at forward and backward angles
In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part-per-million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cherenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed. © 2011 Elsevier B.V. All rights reserved.Articl