230 research outputs found

    Synthetic routes to trifluoromethylphenyl diazirine photolabeling reagents containing an alkyne substituent (TPDYNE) for chemical biology applications

    Get PDF
    The trifluoromethylphenyl diazirine (TPD) group is widely used in photoaffinity labeling studies. The TPDYNE group (TPD with an additional alkyne substituent on the phenyl ring) enables the use of click chemistry in conjunction with photoaffinity labeling and expands the utility of the TPD group. New methods for preparing previously known as well as new TPDYNE reagents are reported. Additional methods for preparation of a TPDYNE precursor from which the TPDYNE group can be generated once the precursor is attached to the molecule of interest are also described. Procedures for attaching the TPDYNE or TPDYNE precursor to carboxyl, amino, hydroxyl and alkyne groups are demonstrated using steroids as examples

    A clickable oxysterol photolabel retains NMDA receptor activity and accumulates in neurons

    Get PDF
    Oxysterol analogs that modulate NMDA receptor function are candidates for therapeutic development to treat neuropsychiatric disorders. However, the cellular actions of these compounds are still unclear. For instance, how these compounds are compartmentalized or trafficked in neurons is unknown. In this study, we utilized a chemical biology approach combining photolabeling and click chemistry. We introduce a biologically active oxysterol analog that contains: (1) a diazirine group, allowing for the permanent labeling of cellular targets, and (2) an alkyne group, allowing for subsequent in situ visualization using Cu2+ catalyzed cycloaddition of an azide-conjugated fluorophore. The physiological properties of this analog at NMDA receptors resemble those of other oxysterols, including occlusion with other oxysterol-like compounds. Fluorescent imaging reveals that the analog accumulates diffusely in the cytoplasm of neurons through an energy-independent mechanism. Overall, this work introduces a novel chemical biology approach to investigate oxysterol actions and introduces a tool useful for further cell biological and biochemical studies of oxysterols.</p

    Neurosteroids as novel antidepressants and anxiolytics: GABA-A receptors and beyond

    Get PDF
    The recent FDA approval of the neurosteroid, brexanolone (allopregnanolone), as a treatment for women with postpartum depression, and successful trials of a related neuroactive steroid, SGE-217, for men and women with major depressive disorder offer the hope of a new era in treating mood and anxiety disorders based on the potential of neurosteroids as modulators of brain function. This review considers potential mechanisms contributing to antidepressant and anxiolytic effects of allopregnanolone and other GABAergic neurosteroids focusing on their actions as positive allosteric modulators of GAB

    A novel mechanism of non- feminizing estrogens in neuroprotection

    Get PDF
    Estrogens are potent and efficacious neuroprotectants both in vitro and in vivo in a variety of models of neurotoxicity. We determined the structural requirements for neuroprotection in an in vitro assay using a panel of more than 70 novel estratrienes, synthesized to reduce or eliminate estrogen receptor (ER) binding. We observed that neuroprotection could be enhanced by as much as 200-fold through modifications that positioned a large bulky group at the C2 or C4 position of the phenolic A ring of the estratriene. Further, substitutions on the B, C or D rings either reduced or did not markedly change neuroprotection. Collectively, there was a negative correlation between binding to ERs and neuroprotection with the more potent compounds showing no ER binding. In an in vivo model for neuroprotection, transient cerebral ischemia, efficacious compounds were active in protection of brain tissue from this pro-oxidant insult. We demonstrated that these non-feminizing estrogens engage in a redox cycle with glutathione, using the hexose monophosphate shunt to apply cytosolic reducing potential to cellular membranes. Together, these results demonstrate that non-feminizing estrogens are neuroprotective and protect brain from the induction of ischemic- and Alzheimer’s disease (AD)-like neuropathology in an animal model. These features of non-feminizing estrogens make them attractive compounds for assessment of efficacy in AD and stroke, as they are not expected to show the side effects of chronic estrogen therapy that are mediated by ER actions in the liver, uterus and breast

    Neurosteroids in Pain Management: A New Perspective on an Old Player

    Get PDF
    Since the discovery of the nervous system’s ability to produce steroid hormones, numerous studies have demonstrated their importance in modulating neuronal excitability. These central effects are mostly mediated through different ligand-gated receptor systems such as GABAA and NMDA, as well as voltage-dependent Ca2+ or K+ channels. Because these targets are also implicated in transmission of sensory information, it is not surprising that numerous studies have shown the analgesic properties of neurosteroids in various pain models. Physiological (nociceptive) pain has protective value for an organism by promoting survival in life-threatening conditions. However, more prolonged pain that results from dysfunction of nerves (neuropathic pain), and persists even after tissue injury has resolved, is one of the main reasons that patients seek medical attention. This review will focus mostly on the analgesic perspective of neurosteroids and their synthetic 5α and 5β analogs in nociceptive and neuropathic pain conditions

    Neurosteroids as stress modulators and neurotherapeutics: Lessons from the retina

    Get PDF
    Neurosteroids are rapidly emerging as important new therapies in neuropsychiatry, with one such agent, brexanolone, already approved for treatment of postpartum depression, and others on the horizon. These steroids have unique properties, including neuroprotective effects that could benefit a wide range of brain illnesses including depression, anxiety, epilepsy, and neurodegeneration. Over the past 25 years, our group has developed ex vivo rodent models to examine factors contributing to several forms of neurodegeneration in the retina. In the course of this work, we have developed a model of acute closed angle glaucoma that involves incubation of ex vivo retinas under hyperbaric conditions and results in neuronal and axonal changes that mimic glaucoma. We have used this model to determine neuroprotective mechanisms that could have therapeutic implications. In particular, we have focused on the role of both endogenous and exogenous neurosteroids in modulating the effects of acute high pressure. Endogenous allopregnanolone, a major stress-activated neurosteroid in the brain and retina, helps to prevent severe pressure-induced retinal excitotoxicity but is unable to protect against degenerative changes in ganglion cells and their axons under hyperbaric conditions. However, exogenous allopregnanolone, at a pharmacological concentration, completely preserves retinal structure and does so by combined effects on gamma-aminobutyric acid type A receptors and stimulation of the cellular process of macroautophagy. Surprisingly, the enantiomer of allopregnanolone, which is inactive at gamma-aminobutyric acid type A receptors, is equally retinoprotective and acts primarily via autophagy. Both enantiomers are also equally effective in preserving retinal structure and function in an in vivo glaucoma model. These studies in the retina have important implications for the ongoing development of allopregnanolone and other neurosteroids as therapeutics for neuropsychiatric illnesses

    Cholesterol Tuning of BK Ethanol Response Is Enantioselective, and Is a Function of Accompanying Lipids

    Get PDF
    In the search to uncover ethanol's molecular mechanisms, the calcium and voltage activated, large conductance potassium channel (BK) has emerged as an important molecule. We examine how cholesterol content in bilayers of 1,2-dioleoyl-3-phosphatidylethanolamine (DOPE)/sphingomyelin (SPM) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS) affect the function and ethanol sensitivity of BK. In addition, we examine how manipulation of cholesterol in biological membranes modulates ethanol's actions on BK. We report that cholesterol levels regulate the change in BK channel open probability elicited by 50 mM ethanol. Low levels of cholesterol (<20%, molar ratio) supports ethanol activation, while high levels of cholesterol leads to ethanol inhibition of BK. To determine if cholesterol affects BK and its sensitivity to ethanol through a direct cholesterol-protein interaction or via an indirect action on the lipid bilayer, we used the synthetic enantiomer of cholesterol (ent-CHS). We found that 20% and 40% ent-CHS had little effect on the ethanol sensitivity of BK, when compared with the same concentration of nat-CHS. We accessed the effects of ent-CHS and nat-CHS on the molecular organization of DOPE/SPM monolayers at the air/water interface. The isotherm data showed that ent-CHS condensed DOPE/SPM monolayer equivalently to nat-CHS at a 20% concentration, but slightly less at a 40% concentration. Atomic force microscopy (AFM) images of DOPE/SPM membranes in the presence of ent-CHS or nat-CHS prepared with LB technique or vesicle deposition showed no significant difference in topographies, supporting the interpretation that the differences in actions of nat-CHS and ent-CHS on BK channel are not likely from a generalized action on bilayers. We conclude that membrane cholesterol influences ethanol's modulation of BK in a complex manner, including an interaction with the channel protein. Finally, our results suggest that an understanding of membrane protein function and modulation is impossible unless protein and surrounding lipid are considered as a functional unit

    Kinetic and Structural Determinants for GABA-A Receptor Potentiation by Neuroactive Steroids

    Get PDF
    Endogenous neurosteroids and synthetic neuroactive steroid analogs are among the most potent and efficacious potentiators of the mammalian GABA-A receptor. The compounds interact with one or more sites on the receptor leading to an increase in the channel open probability through a set of changes in the open and closed time distributions. The endogenous neurosteroid allopregnanolone potentiates the α1β2γ2L GABA-A receptor by enhancing the mean duration and prevalence of the longest-lived open time component and by reducing the prevalence of the longest-lived intracluster closed time component. Thus the channel mean open time is increased and the mean closed time duration is decreased, resulting in potentiation of channel function. Some of the other previously characterized neurosteroids and steroid analogs act through similar mechanisms while others affect a subset of these parameters. The steroids modulate the GABA-A receptor through interactions with the membrane-spanning region of the receptor. However, the number of binding sites that mediate the actions of steroids is unclear. We discuss data supporting the notions of a single site vs. multiple sites mediating the potentiating actions of steroids

    A Clickable Oxysterol Photolabel Retains NMDA Receptor Activity and Accumulates in Neurons

    Get PDF
    Oxysterol analogs that modulate NMDA receptor function are candidates for therapeutic development to treat neuropsychiatric disorders. However, the cellular actions of these compounds are still unclear. For instance, how these compounds are compartmentalized or trafficked in neurons is unknown. In this study, we utilized a chemical biology approach combining photolabeling and click chemistry. We introduce a biologically active oxysterol analog that contains: (1) a diazirine group, allowing for the permanent labeling of cellular targets, and (2) an alkyne group, allowing for subsequent in situ visualization using Cu2+ catalyzed cycloaddition of an azide-conjugated fluorophore. The physiological properties of this analog at NMDA receptors resemble those of other oxysterols, including occlusion with other oxysterol-like compounds. Fluorescent imaging reveals that the analog accumulates diffusely in the cytoplasm of neurons through an energy-independent mechanism. Overall, this work introduces a novel chemical biology approach to investigate oxysterol actions and introduces a tool useful for further cell biological and biochemical studies of oxysterols
    • …
    corecore