510 research outputs found
Dissipative Particle Dynamics with energy conservation
Dissipative particle dynamics (DPD) does not conserve energy and this
precludes its use in the study of thermal processes in complex fluids. We
present here a generalization of DPD that incorporates an internal energy and a
temperature variable for each particle. The dissipation induced by the
dissipative forces between particles is invested in raising the internal energy
of the particles. Thermal conduction occurs by means of (inverse) temperature
differences. The model can be viewed as a simplified solver of the fluctuating
hydrodynamic equations and opens up the possibility of studying thermal
processes in complex fluids with a mesoscopic simulation technique.Comment: 5 page
Prescriptions and proscriptions: moralising sleep medicines
This work was carried out with colleagues at the University of Warwick and Royal Holloway, University of London.
Open access articleThe pharmaceuticalisation of sleep is a contentious issue. Sleep medicines get a‘bad press’due to their potential for dependence and other side effects, including studies reporting increased mortality risks for long-term users. Yet relatively little qualitative social science research has been conducted into how people understandand negotiate their use/non-use of sleep medicines in the context of their everyday lives. This paper draws on focus group data collected in the UK to elicit collective views on and experiences of prescription hypnotics across different social contexts.Respondents, we show, drew on a range of moral repertoires which allowed them to present themselves and their relationships with hypnotics in different ways. Six distinct repertoires about hypnotic use are identified in this regard: the ‘deserving’ patient, the ‘responsible’ user, the ‘compliant’ patient, the ‘addict’, the ‘sinful’ user and the ‘noble’ non user. These users and non-users are constructed drawing on cross-cutting themes of addiction and control, ambivalence and reflexivity. Such issues are in turn discussed in relation to recent sociological debates on the pharmaceuticalisation/de-pharmaceuticalisation of everyday life and the consumption of medicines in the UK today
Two-dimensional hydrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic fluid flow through porous media
The behaviour of two dimensional binary and ternary amphiphilic fluids under
flow conditions is investigated using a hydrodynamic lattice gas model. After
the validation of the model in simple cases (Poiseuille flow, Darcy's law for
single component fluids), attention is focussed on the properties of binary
immiscible fluids in porous media. An extension of Darcy's law which explicitly
admits a viscous coupling between the fluids is verified, and evidence of
capillary effects are described. The influence of a third component, namely
surfactant, is studied in the same context. Invasion simulations have also been
performed. The effect of the applied force on the invasion process is reported.
As the forcing level increases, the invasion process becomes faster and the
residual oil saturation decreases. The introduction of surfactant in the
invading phase during imbibition produces new phenomena, including
emulsification and micellisation. At very low fluid forcing levels, this leads
to the production of a low-resistance gel, which then slows down the progress
of the invading fluid. At long times (beyond the water percolation threshold),
the concentration of remaining oil within the porous medium is lowered by the
action of surfactant, thus enhancing oil recovery. On the other hand, the
introduction of surfactant in the invading phase during drainage simulations
slows down the invasion process -- the invading fluid takes a more tortuous
path to invade the porous medium -- and reduces the oil recovery (the residual
oil saturation increases).Comment: 48 pages, 26 figures. Phys. Rev. E (in press
Ethics, evidence based sports medicine, and the use of platelet rich plasma in the English Premier League
The use of platelet rich plasma (PRP) as a novel treatment is discussed in the context of a qualitative research study comprising 38 interviews with sports medicine practitioners and other stakeholders working within the English Premier League during the 2013-16 seasons. Analysis of the data produced several overarching themes: conservatism versus experimentalism in medical attitudes; therapy perspectives divergence; conflicting versions of appropriate evidence; subcultures; community beliefs/practices; and negotiation of medical decision-making. The contested evidence base for the efficacy of PRP is presented in the context of a broader professional shift towards evidence based medicine within sports medicine. Many of the participants while accepting this shift are still committed to casuistic practices where clinical judgment is flexible and does not recognize a context-free hierarchy of evidentiary standards to ethically justifiable practice. We also discuss a tendency in the data collected to consider the use of deceptive, placebo-like, practices among the clinician participants that challenge dominant understandings of informed consent in medical ethics. We conclude that the complex relation between evidence and ethics requires greater critical scrutiny for this emerging specialism within the medical community
Symmetry-breaking in chiral polymerisation
We propose a model for chiral polymerisation and investigate its symmetric
and asymmetric solutions. The model has a source species which decays into
left- and right-handed types of monomer, each of which can polymerise to form
homochiral chains; these chains are susceptible to `poisoning' by the opposite
handed monomer. Homochiral polymers are assumed to influence the proportion of
each type of monomer formed from the precursor. We show that for certain
parameter values a positive feedback mechanism makes the symmetric steady-state
solution unstable. The kinetics of polymer formation are then analysed in the
case where the system starts from zero concentrations of monomer and chains. We
show that following a long induction time, extremely large concentrations of
polymers are formed for a short time, during this time an asymmetry introduced
into the system by a random external perturbation may be massively amplified.
The system then approaches one of the steady-state solutions described above.Comment: 26pages, 6 Figure
Renormalisation-theoretic analysis of non-equilibrium phase transitions I: The Becker-Doring equations with power law rate coefficients
We study in detail the application of renormalisation theory to models of
cluster aggregation and fragmentation of relevance to nucleation and growth
processes. We investigate the Becker-Dorging equations, originally formulated
to describe and analyse non-equilibrium phase transitions, and more recently
generalised to describe a wide range of physicochemical problems. In the
present paper we analyse how the systematic coarse-graining renormalisation of
the \BD system of equations affects the aggregation and fragmentation rate
coefficients. We consider the case of power-law size-dependent cluster rate
coefficients which we show lead to only three classes of system that require
analysis: coagulation-dominated systems, fragmentation-dominated systems and
those where coagulation and fragmentation are exactly balanced. We analyse the
late-time asymptotics associated with each class.Comment: 18 pages, to appear in J Phys A Math Ge
The concept of medicalisation reassessed: a response to Joan Busfield
Joan Busfield's (2017) reassessment of the concept of medicalisation is a welcome and timely contribution to a key issue within medical sociology, past and present. Not simply medical sociology however. Medicalisation indeed, as Conrad (2015) himself notes, now carries ‘analytical weight’ in a range of disciplines beyond sociology including history, anthropology, bioethics, economics, media studies and feminism. To this of course we may add engagements within medicine itself as well as the wider circulation of ‘medicalisation’ within popular culture, if not public consciousness today, as a commonly used if not abused term of reference, thereby rending medicalisation a victim of its own success perhaps. Hence debates in recent years as to whether or not medicalisation has outlived its usefulness as a concept, including its relationship to other newly developed concepts and ways of theorising these matters, in sociology and beyond (Bell and Figert 2014, 2015, Rose 2007)
Lattice-Gas Simulations of Minority-Phase Domain Growth in Binary Immiscible and Ternary Amphiphilic Fluid
We investigate the growth kinetics of binary immiscible fluids and emulsions
in two dimensions using a hydrodynamic lattice-gas model. We perform
off-critical quenches in the binary fluid case and find that the domain size
within the minority phase grows algebraically with time in accordance with
theoretical predictions. In the late time regime we find a growth exponent n =
0.45 over a wide range of concentrations, in good agreement with other
simluations. In the early time regime we find no universal growth exponent but
a strong dependence on the concentration of the minority phase. In the ternary
amphiphilic fluid case the kinetics of self assembly of the droplet phase are
studied for the first time. At low surfactant concentrations, we find that,
after an early algebraic growth, a nucleation regime dominates the late-time
kinetics, which is enhanced by an increasing concentration of surfactant. With
a further increase in the concentration of surfactant, we see a crossover to
logarithmically slow growth, and finally saturation of the oil droplets, which
we fit phenomenologically to a stretched exponential function. Finally, the
transition between the droplet and the sponge phase is studied.Comment: 22 pages, 13 figures, submitted to PR
Lattice-gas simulations of Domain Growth, Saturation and Self-Assembly in Immiscible Fluids and Microemulsions
We investigate the dynamical behavior of both binary fluid and ternary
microemulsion systems in two dimensions using a recently introduced
hydrodynamic lattice-gas model of microemulsions. We find that the presence of
amphiphile in our simulations reduces the usual oil-water interfacial tension
in accord with experiment and consequently affects the non-equilibrium growth
of oil and water domains. As the density of surfactant is increased we observe
a crossover from the usual two-dimensional binary fluid scaling laws to a
growth that is {\it slow}, and we find that this slow growth can be
characterized by a logarithmic time scale. With sufficient surfactant in the
system we observe that the domains cease to grow beyond a certain point and we
find that this final characteristic domain size is inversely proportional to
the interfacial surfactant concentration in the system.Comment: 28 pages, latex, embedded .eps figures, one figure is in colour, all
in one uuencoded gzip compressed tar file, submitted to Physical Review
Fluctuating hydrodynamic modelling of fluids at the nanoscale
A good representation of mesoscopic fluids is required to combine with
molecular simulations at larger length and time scales (De Fabritiis {\it et.
al}, Phys. Rev. Lett. 97, 134501 (2006)). However, accurate computational
models of the hydrodynamics of nanoscale molecular assemblies are lacking, at
least in part because of the stochastic character of the underlying fluctuating
hydrodynamic equations. Here we derive a finite volume discretization of the
compressible isothermal fluctuating hydrodynamic equations over a regular grid
in the Eulerian reference system. We apply it to fluids such as argon at
arbitrary densities and water under ambient conditions. To that end, molecular
dynamics simulations are used to derive the required fluid properties. The
equilibrium state of the model is shown to be thermodynamically consistent and
correctly reproduces linear hydrodynamics including relaxation of sound and
shear modes. We also consider non-equilibrium states involving diffusion and
convection in cavities with no-slip boundary conditions
- …