673 research outputs found

    Nuclear Structure Calculations and Modern Nucleon-Nucleon Potentials

    Full text link
    We study ground-state properties of the doubly magic nuclei 4He, 16O, and 40Ca employing the Goldstone expansion and using as input four different high-quality nucleon-nucleon (NN) potentials. The short-range repulsion of these potentials is renormalized by constructing a smooth low-momentum potential V-low-k. This is used directly in a Hartree-Fock approach and corrections up to third order in the Goldstone expansion are evaluated. Comparison of the results shows that they are only slightly dependent on the choice of the NN potential.Comment: 5 pages, submitted to Physical Review

    Study of neutron-rich calcium isotopes with a realistic shell-model interaction

    Full text link
    We have studied neutron-rich calcium isotopes in terms of the shell model employing a realistic effective interaction derived from the CD-Bonn nucleon-nucleon potential. The short-range repulsion of the potential is renormalized by way of the V-low-k approach. The calculated results are in very good agreement with the available experimental data, thus supporting our predictions for the hitherto unknown spectra of 53-56Ca nuclei. In this context, the possible existence of an N=34 shell closure is discussed.Comment: 11 pages, 3 figures, to be published in Physical Review

    Realistic shell-model calculations: current status and open problems

    Full text link
    The main steps involved in realistic shell-model calculations employing two-body low-momentum interactions are briefly reviewed. The practical value of this approach is exemplified by the results of recent calculations and some remaining open questions and directions for future research are discussed.Comment: 12 pages, 2 figures, contribution to J. Phys G, Special Issue, Focus Section: Open Problems in Nuclear Structur

    Proton-Neutron Interaction near Closed Shells

    Full text link
    Odd-odd nuclei around double shell closures are a direct source of information on the proton-neutron interaction between valence nucleons. We have performed shell-model calculations for doubly odd nuclei close to 208^{208}Pb, 132^{132}Sn and 100^{100}Sn using realistic effective interactions derived from the CD-Bonn nucleon-nucleon potential. The calculated results are compared with the available experimental data, attention being focused on particle-hole and particle-particle multiplets. While a good agreement is obtained for all the nuclei considered, a detailed analysis of the matrix elements of the effective interaction shows that a stronger core-polarization contribution seems to be needed in the particle-particle case.Comment: 8 pages, 6 figures, Proccedings of the International Conference "Nuclear Structure and Related Topics", Dubna, Russia, September 2-6, 2003, to be published in Yadernaia Fizika (Physics of Atomic Nuclei

    Realistic Shell-Model Calculations for Proton-Rich N=50 Isotones

    Get PDF
    The structure of the N=50 isotones 98Cd, 97Ag, and 96Pd is studied in terms of shell model employing a realistic effective interaction derived from the Bonn-A nucleon-nucleon potential. The single-hole energies are fixed by resorting to an analysis of the low-energy spectra of the isotones with A>= 91. Comparison shows that our results are in very satisfactory agreement with the available experimental data. This supports confidence in the predictions of our calculationsComment: 8 pages, 3 figures, to be published on Journal of Physics

    Study of the ground-state energy of 40Ca with the CD-Bonn nucleon-nucleon potential

    Full text link
    We have calculated the ground-state energy of the doubly-magic nucleus 40Ca within the framework of the Goldstone expansion using the CD-Bonn nucleon-nucleon potential. The short-range repulsion of this potential has been renormalized by integrating out its high-momentum components so as to derive a low-momentum potential V-low-k defined up to a cutoff momentum Lambda. A simple criterion has been employed to establish a connection between this cutoff momentum and the size of the two-nucleon model space in the harmonic oscillator basis. This model-space truncation approach provides a reliable way to renormalize the free nucleon-nucleon potential preserving its many-body physics. The role of the 3p-3h and 4p-4h excitations in the description of the ground state of 40Ca is discussed.Comment: 4 pages, 1 figure, 1 table, to be published in Physical Review

    Low Momentum Nucleon-Nucleon Interactions and Shell-Model Calculations

    Get PDF
    In the last few years, the low-momentum nucleon-nucleon (NN) interaction V-low-k derived from free-space NN potentials has been successfully used in shell-model calculations. V-low-k is a smooth potential which preserves the deuteron binding energy as well as the half-on-shell T-matrix of the original NN potential up to a momentum cutoff Lambda. In this paper we put to the test a new low-momentum NN potential derived from chiral perturbation theory at next-to-next-to-next-to-leading order with a sharp low-momentum cutoff at 2.1 fm-1. Shell-model calculations for the oxygen isotopes using effective hamiltonians derived from both types of low-momentum potential are performed. We find that the two potentials show the same perturbative behavior and yield very similar results.Comment: 8 pages, 8 figures, to be published in Physical Review

    Bonn Potential and Shell-Model Calculations for 206,205,204Pb

    Get PDF
    The structure of the nuclei 206,205,204Pb is studied interms of shell model employing a realistic effective interaction derived from the Bonn A nucleon-nucleon potential. The energy spectra, binding energies and electromagnetic properties are calculated and compared with experiment. A very good overall agreement is obtained. This evidences the reliability of our realistic effective interaction and encourages use of modern realistic potentials in shell-model calculations for heavy-mass nuclei.Comment: 4 pages, 4 figures, submitted to Physical Review

    Neutron-proton interaction in rare-earth nuclei: Role of tensor force

    Get PDF
    We investigate the role of the tensor force in the description of doubly odd deformed nuclei within the framework of the particle-rotor model. We study the rare-earth nuclei 174Lu, 180Ta, 182Ta, and 188Re using a finite-range interaction, with and without tensor terms. Attention is focused on the lowest K=0 and K=1 bands, where the effects of the residual neutron-proton interaction are particularly evident. Comparison of the calculated results with experimental data evidences the importance of the tensor-force effects.Comment: 8 pages, 5 figures, to be published on Physical Review

    Low momentum nucleon-nucleon potential and shell model effective interactions

    Get PDF
    A low momentum nucleon-nucleon (NN) potential V-low-k is derived from meson exhange potentials by integrating out the model dependent high momentum modes of V_NN. The smooth and approximately unique V-low-k is used as input for shell model calculations instead of the usual Brueckner G matrix. Such an approach eliminates the nuclear mass dependence of the input interaction one finds in the G matrix approach, allowing the same input interaction to be used in different nuclear regions. Shell model calculations of 18O, 134Te and 135I using the same input V-low-k have been performed. For cut-off momentum Lambda in the vicinity of 2 fm-1, our calculated low-lying spectra for these nuclei are in good agreement with experiments, and are weakly dependent on Lambda.Comment: 5 pages, 5 figure
    • …
    corecore