1,355 research outputs found

    Extracting W Boson Couplings from the e+e−e^{+}e^{-} Production of Four Leptons

    Full text link
    We consider the processes e+e−→ℓ+ℓ′−ννˉ′e^{+}e^{-}\rightarrow \ell^{+} \ell^{\prime -}\nu \bar{\nu}^{\prime}, including all possible charged lepton combinations, with regard to measuring parameters characterizing the WW boson. We calculate at what level these processes can be used to measure anamolous triple-boson vertice coupling parameters for the cases of e+e−e^{+}e^{-} colliders at 500 GeVGeV and 1 TeVTeV center of mass energies.Comment: 13 pages,OCIP/C-93-

    Globular Clusters in the dE,N galaxy NGC 3115 DW1: New Insights from Spectroscopy and HST Photometry

    Full text link
    The properties of globular clusters in dwarf galaxies are key to understanding the formation of globular cluster systems, and in particular in verifying scenarios in which globular cluster systems of larger galaxies formed (at least partly) from the accretion of dwarf galaxies. Here, we revisit the globular cluster system of the dE,N galaxy NGC 3115 DW1 - a companion of the nearby S0 galaxy NGC 3115 - adding Keck/LRIS spectroscopy and HST/WFPC2 imaging to previous ground-based photometry. Spectra for seven globular clusters reveal normal abundance ratios with respect to the Milky Way and M31 clusters, as well as a relatively high mean metallicity ([Fe/H] = -1.0+/-0.1 dex). Crude kinematics indicate a high velocity dispersion within 10 kpc which could either be caused by dark matter dominated outer regions, or by the stripping of outer globular clusters by the nearby giant galaxy NGC 3115. The total galaxy mass out to 3 and 10 kpc lies between 10^10 and 10^11 solar masses and 2*10^10 and 4*10^11 solar masses, respectively, depending on the mass estimator used and the assumptions on cluster orbits and systemic velocity. The HST imaging allows measurement of sizes for two clusters, returning core radii around 2.0 pc, similar to the sizes observed in other galaxies. Spectroscopy allows an estimate of the degree of contamination by foreground stars or background galaxies for the previous ground-based photometry, but does not require a revision of previous results: NGC 3115 DW1 hosts around 60+/-20 clusters which corresponds to a specific frequency of 4.9+/-1.9, on the high end for massive dEs. Given its absolute magnitude (M_V=-17.7 mag) and the properties of its cluster system, NGC 3115 DW1 appears to be a transition between a luminous dE and low-luminosity E galaxy.Comment: 25 pages, 8 figures, accepted for publication in The Astronomical Journal, August 2000 issu

    Antisymmetric tensor unparticle and the radiative lepton flavor violating decays

    Full text link
    We study the contribution of the tensor unparticle mediation to the branching ratios of the radiative lepton flavor violating decays and predict a restriction region for free parameters of the scenario by using experimental upper limits. We observe that the branching ratios of the radiative lepton flavor violating decays are sensitive to the fundamental mass scales of the scenario and to the scale dimension of antisymmetric tensor unparticle. We obtain a more restricted set for the free parameters in the case of the \mu\rightarrow e \gamma decayComment: 15 pages, 10 figure

    Reversible catastrophic oxidation of a 38Fe-34Ni-25Cr alloy induced by sodium sulphate at low oxygen potential atmospheres

    Get PDF
    International audienceThe chromia-forming nickel-based alloy Haynes (R) HR-120 was oxidised with and without Na2SO4 deposit in a CO/H-2/CO2 (45/45/10%vol.) simulated process atmosphere at 900 degrees C for 96 h. During the first hours of oxidation, samples covered by sodium sulphate exhibit higher oxidation rate than non-covered ones. However, after 24 h both sulphate-covered and uncovered specimens follow the same linear kinetics. In this very low oxygen partial pressure environment (10(-18) atm), the presence of Na2SO4 promotes the growth of localized iron-rich oxide nodules leading to the observed accelerated oxidation. The development of these nodules is discussed to be the result of the chromia dissolution induced by a basic fluxing mechanism. As soon as the salt is evaporated, slower kinetics are observed and the nodules disappear. In these specific conditions, the oxidation could be considered as a self-healing process

    The Yang-Baxter equation for PT invariant nineteen vertex models

    Full text link
    We study the solutions of the Yang-Baxter equation associated to nineteen vertex models invariant by the parity-time symmetry from the perspective of algebraic geometry. We determine the form of the algebraic curves constraining the respective Boltzmann weights and found that they possess a universal structure. This allows us to classify the integrable manifolds in four different families reproducing three known models besides uncovering a novel nineteen vertex model in a unified way. The introduction of the spectral parameter on the weights is made via the parameterization of the fundamental algebraic curve which is a conic. The diagonalization of the transfer matrix of the new vertex model and its thermodynamic limit properties are discussed. We point out a connection between the form of the main curve and the nature of the excitations of the corresponding spin-1 chains.Comment: 43 pages, 6 figures and 5 table

    Unraveling the Nature of Charge Excitations in La2_2CuO4_4 with Momentum-Resolved Cu KK-edge Resonant Inelastic X-ray Scattering

    Full text link
    Results of model calculations using exact diagonalization reveal the orbital character of states associated with different Raman loss peaks in Cu KK-edge resonant inelastic X-ray scattering (RIXS) from La2_{2}CuO4_{4}. The model includes electronic orbitals necessary to highlight non-local Zhang-Rice singlet, charge transfer and dd-dd excitations, as well as states with apical oxygen 2pzp_z character. The dispersion of these excitations is discussed with prospects for resonant final state wave-function mapping. A good agreement with experiments emphasizes the substantial multi-orbital character of RIXS profiles in the energy transfer range 1-6 eV.Comment: Original: 4.5 pages. Replaced: 4 pages and 4 figures with updated content and reference

    Genomic evidence for sulfur intermediates as new biogeochemical hubs in a model aquatic microbial ecosystem

    Get PDF
    Background: The sulfur cycle encompasses a series of complex aerobic and anaerobic transformations of S-containing molecules and plays a fundamental role in cellular and ecosystem-level processes, influencing biological carbon transfers and other biogeochemical cycles. Despite their importance, the microbial communities and metabolic pathways involved in these transformations remain poorly understood, especially for inorganic sulfur compounds of intermediate oxidation states (thiosulfate, tetrathionate, sulfite, polysulfides). Isolated and highly stratified, the extreme geochemical and environmental features of meromictic ice-capped Lake A, in the Canadian High Arctic, provided an ideal model ecosystem to resolve the distribution and metabolism of aquatic sulfur cycling microorganisms along redox and salinity gradients. Results: Applying complementary molecular approaches, we identified sharply contrasting microbial communities and metabolic potentials among the markedly distinct water layers of Lake A, with similarities to diverse fresh, brackish and saline water microbiomes. Sulfur cycling genes were abundant at all depths and covaried with bacterial abundance. Genes for oxidative processes occurred in samples from the oxic freshwater layers, reductive reactions in the anoxic and sulfidic bottom waters and genes for both transformations at the chemocline. Up to 154 different genomic bins with potential for sulfur transformation were recovered, revealing a panoply of taxonomically diverse microorganisms with complex metabolic pathways for biogeochemical sulfur reactions. Genes for the utilization of sulfur cycle intermediates were widespread throughout the water column, co-occurring with sulfate reduction or sulfide oxidation pathways. The genomic bin composition suggested that in addition to chemical oxidation, these intermediate sulfur compounds were likely produced by the predominant sulfur chemo- and photo-oxidisers at the chemocline and by diverse microbial degraders of organic sulfur molecules. Conclusions: The Lake A microbial ecosystem provided an ideal opportunity to identify new features of the biogeochemical sulfur cycle. Our detailed metagenomic analyses across the broad physico-chemical gradients of this permanently stratified lake extend the known diversity of microorganisms involved in sulfur transformations over a wide range of environmental conditions. The results indicate that sulfur cycle intermediates and organic sulfur molecules are major sources of electron donors and acceptors for aquatic and sedimentary microbial communities in association with the classical sulfur cycl
    • …
    corecore