14 research outputs found

    Training-induced inversion of spontaneous exchange bias field on La1.5Ca0.5CoMnO6

    Full text link
    In this work we report the synthesis and structural, electronic and magnetic properties of La1.5Ca0.5CoMnO6 double-perovskite. This is a re-entrant spin cluster material which exhibits a non-negligible negative exchange bias effect when it is cooled in zero magnetic field from an unmagnetized state down to low temperature. X-ray powder diffraction, X-ray photoelectron spectroscopy and magnetometry results indicate mixed valence state at Co site, leading to competing magnetic phases and uncompensated spins at the magnetic interfaces. We compare the results for this Ca-doped material with those reported for the resemblant compound La1.5Sr0.5CoMnO6, and discuss the much smaller spontaneous exchange bias effect observed for the former in terms of its structural and magnetic particularities. For La1.5Ca0.5CoMnO6, when successive magnetization loops are carried, the spontaneous exchange bias field inverts its sign from negative to positive from the first to the second measurement. We discuss this behavior based on the disorder at the magnetic interfaces, related to the presence of a glassy phase. This compound also exhibits a large conventional exchange bias, for which there is no sign inversion of the exchange bias field for consecutive cycles

    Compensation temperatures and exchange bias in La1.5Ca0.5CoIrO6

    Get PDF
    We report on the study of magnetic properties of the La1.5Ca0.5CoIrO6 double perovskite. Via ac magnetic susceptibility we have observed evidence of weak ferromagnetism and reentrant spin glass behavior on an antiferromagnetic matrix. Regarding the magnetic behavior as a function of temperature, we have found that the material displays up to three inversions of its magnetization, depending on the appropriate choice of the applied magnetic field. At low temperature the material exhibit exchange bias effect when it is cooled in the presence of a magnetic field. Also, our results indicate that this effect may be observed even when the system is cooled at zero field. Supported by other measurements and also by electronic structure calculations, we discuss the magnetic reversals and spontaneous exchange bias effect in terms of magnetic phase separation and magnetic frustration of Ir4+ ions located between the antiferromagnetically coupled Co ions.Comment: 10 pages, 8 figures and supplemental materia

    Structural and magnetic properties of the La2-xCaxCoIrO6 double perovskite series

    No full text
    CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPERJ - FUNDAÇÃO CARLOS CHAGAS FILHO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIROPolycrystalline samples of the series La2-xCaxCoIrO6 (0 <= x <= 1.2) have been synthesized and its structural and magnetic properties were investigated using experiments of X-ray powder diffraction, temperature dependent magnetic susceptibility and magnetization as a function of applied magnetic field. All grown polycrystalline compounds form in a monoclinic structure (space group P2(1)/n) with a partially ordered distribution of transition metal cations Co/Ir over the six-coordinate sites. Our results indicate variation of the magnetic interactions between Co and Ir magnetic sublattices possibly due to valence changes of the transition metals, induced by doping. The undoped La2CoIrO6 presents magnetic ordering at similar to 97 K, while for Ca-doped compounds a decrease of net magnetization and ordering temperatures was observed. For x=0.2 and 0.5 the emergence of a second magnetic interaction, due to the presence of high spin Co3+, becomes evident. Interestingly, for x=0.8 the large effective magnetic moment indicates strong orbital contribution and spin-orbit coupling and/or the presence of Co4+ in high spin state. (C) 2014 Elsevier Inc. All rights reserved.Polycrystalline samples of the series La2-xCaxCoIrO6 (0 <= x <= 1.2) have been synthesized and its structural and magnetic properties were investigated using experiments of X-ray powder diffraction, temperature dependent magnetic susceptibility and magnetization as a function of applied magnetic field. All grown polycrystalline compounds form in a monoclinic structure (space group P2(1)/n) with a partially ordered distribution of transition metal cations Co/Ir over the six-coordinate sites. Our results indicate variation of the magnetic interactions between Co and Ir magnetic sublattices possibly due to valence changes of the transition metals, induced by doping. The undoped La2CoIrO6 presents magnetic ordering at similar to 97 K, while for Ca-doped compounds a decrease of net magnetization and ordering temperatures was observed. For x=0.2 and 0.5 the emergence of a second magnetic interaction, due to the presence of high spin Co3+, becomes evident. Interestingly, for x=0.8 the large effective magnetic moment indicates strong orbital contribution and spin-orbit coupling and/or the presence of Co4+ in high spin state.221373377CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPERJ - FUNDAÇÃO CARLOS CHAGAS FILHO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIROCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPERJ - FUNDAÇÃO CARLOS CHAGAS FILHO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIROCNPq [470.613/2012-2]470.613/2012-2Sem informação2006/60440-0, 2007/50968-0, 2012/04870-7111.382/2013This work was supported by the Brazilian funding agencies CNPq (Grant no. 470.613/2012-2), CAPES, FAPESP (Grants nos. 2006/60440-0, 2007/50968-0, 2012/04870-7) and FAPERJ (Grant no. 111.382/2013). CBPF X-ray laboratory is acknowledged for concession of equipment time

    Zero-field-cooled exchange bias effect in phase-segregated La2-xA(x)CoMnO(6-delta) (A = Ba,Ca,Sr; x=0, 0.5)

    No full text
    CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPERJ - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIROFAPEG - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE GOIÁSFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORIn the zero-field-cooled exchange bias (ZEB) effect, the unidirectional magnetic anisotropy is set at low temperatures even when the system is cooled in the absence of an external magnetic field. La1.5Sr0.5CoMnO6 stands out as presenting the largest ZEB reported so far, while for La1.5Ca0.5CoMnO6 the exchange bias field (HEB) is one order of magnitude smaller. Here we show that La1.5Ba0.5CoMnO6 also exhibits a pronounced shift of its magnetic hysteresis loop, with an intermediate H-EB value with respect to Ca- and Sr-doped samples. To figure out the microscopic mechanisms responsible for this phenomenon, these compounds were investigated by means of synchrotron x-ray powder diffraction, Raman spectroscopy, muon spin rotation and relaxation, ac and dc magnetization, x-ray absorption spectroscopy (XAS), and x-ray magnetic circular dichroism (XMCD). The parent compound La2CoMnO6 was also studied for comparison as a reference of a non-ZEB material. Our results show that the Ba-, Ca-, and Sr-doped samples present a small amount of phase segregation, and that the ZEB effect is strongly correlated to the system's structure. We also observed that mixed valence states Co2+/Co3+ and Mn4+/Mn3+ are already present at the La2CoMnO6 parent compound, and that Ba2+/Ca2+/Sr2+ partial substitution at the La3+ site leads to a large increase of Co average valence, with a subtle augmentation of Mn formal valence. Estimates of the Co and Mn valences from the L-edge XAS indicate the presence of oxygen vacancies in all samples (0.05 <= delta <= 0.1). Our XMCD results show a great decrease of Co moment for the doped compounds, and they indicate that the shift of the hysteresis curves for these samples is related to uncompensated antiferromagnetic coupling between Co and Mn.1005113CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPERJ - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIROFAPEG - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE GOIÁSFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPERJ - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIROFAPEG - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE GOIÁSFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIOR400134/2016-0Li 244/12Sem informaçãoSem informaçãoSem informaçã
    corecore