216 research outputs found

    Tricks to translating TB transcriptomics.

    Get PDF
    Transcriptomics and other high-throughput methods are increasingly applied to questions relating to tuberculosis (TB) pathogenesis. Whole blood transcriptomics has repeatedly been applied to define correlates of TB risk and has produced new insight into the late stage of disease pathogenesis. In a novel approach, authors of a recently published study in Science Translational Medicine applied complex data analysis of existing TB transcriptomic datasets, and in vitro models, in an attempt to identify correlates of protection in TB, which are crucially required for the development of novel TB diagnostics and therapeutics to halt this global epidemic. Utilizing latent TB infection (LTBI) as a surrogate of protection, they identified IL-32 as a mediator of interferon gamma (IFNγ)-vitamin D dependent antimicrobial immunity and a marker of LTBI. Here, we provide a review of all TB whole-blood transcriptomic studies to date in the context of identifying correlates of protection, discuss potential pitfalls of combining complex analyses originating from such studies, the importance of detailed metadata to interpret differential patient classification algorithms, the effect of differing circulating cell populations between patient groups on the interpretation of resulting biomarkers and we decipher weighted gene co-expression network analysis (WGCNA), a recently developed systems biology tool which holds promise of identifying novel pathway interactions in disease pathogenesis. In conclusion, we propose the development of an integrated OMICS platform and open access to detailed metadata, in order for the TB research community to leverage the vast array of OMICS data being generated with the aim of unraveling the holy grail of TB research: correlates of protection

    Immune interaction between SARS-CoV-2 and Mycobacterium tuberculosis

    Get PDF
    SARS-CoV-2 and Mycobacterium tuberculosis (Mtb) are major infectious causes of death, with meta-analyses and population-based studies finding increased mortality in co-infected patients simultaneously diagnosed with COVID-19 and tuberculosis (TB). There is a need to understand the immune interaction between SARS-CoV-2 and Mtb which impacts poor outcomes for those co-infected. We performed a PubMed and preprint search using keywords [SARS-CoV-2] AND [tuberculosis] AND [Immune response], including publications after January 2020, excluding reviews or opinions. Abstracts were evaluated by authors for inclusion of data specifically investigating the innate and/or acquired immune responses to SARS-CoV-2 and Mtb in humans and animal models, immunopathological responses in co-infection and both trials and investigations of potential protection against SARS-CoV-2 by Bacille Calmette Guérin (BCG). Of the 248 articles identified, 39 were included. Incidence of co-infection is discussed, considering in areas with a high burden of TB, where reported co-infection is likely underestimated. We evaluated evidence of the clinical association between COVID-19 and TB, discuss differences and similarities in immune responses in humans and in murine studies, and the implications of co-infection. SARS-CoV-2 and Mtb have both been shown to modulate immune responses, particularly of monocytes, macrophages, neutrophils, and T cells. Co-infection may result in impaired immunity to SARS-CoV-2, with an exacerbated inflammatory response, while T cell responses to Mtb may be modulated by SARS-CoV-2. Furthermore, there has been no proven potential COVID-19 clinical benefit of BCG despite numerous large-scale clinical trials

    Recent progress in understanding immune activation in the pathogenesis in HIV-TB coinfection

    Get PDF
    Purpose of review Tuberculosis is the leading infectious cause of death worldwide, and HIV-1 the best recognized risk factor for active TB. This review focuses on immune complex formation; the interplay of type I and II interferon signaling; and T-cell activation in HIV–TB pathogenesis. Recent findings Circulating immune complexes and complement, and Fcγ signaling in whole blood act as early markers of TB disease in HIV-1-infected persons. HIV-1 is associated with a type I interferon response in whole blood, reducing the specificity of TB biomarkers dependent on type I and II interferon genes. Type I and type II interferons are implicated in both protection and TB disease, a protective outcome may depend on modulating these pathways. Whilst M. tuberculosis-specific CD4 T cells are preferentially depleted during HIV-1 infection, activation markers on M. tuberculosis-specific CD4 T cells, in particular HLA-DR, reflect immune activation and have promise as biomarkers of M. tuberculosis disease activity in individuals with HIV-1. Summary TB pathogenesis in HIV-1 involves a complex interaction of underlying activation of both the innate and adaptive immune systems. Further research is required to understand whether biomarkers of activation could be used to predict or quantify TB disease in the context of HIV-1 infection

    Matrix Degradation in Human Immunodeficiency Virus Type 1-Associated Tuberculosis and Tuberculosis Immune Reconstitution Inflammatory Syndrome: A Prospective Observational Study.

    Get PDF
    Background: Extensive immunopathology occurs in human immunodeficiency virus (HIV)/tuberculosis (TB) coinfection, but the underlying molecular mechanisms are not well-defined. Excessive matrix metalloproteinase (MMP) activity is emerging as a key process but has not been systematically studied in HIV-associated TB. Methods: We performed a cross-sectional study of matrix turnover in HIV type 1 (HIV-1)-infected and -uninfected TB patients and controls, and a prospective cohort study of HIV-1-infected TB patients at risk of TB immune reconstitution inflammatory syndrome (TB-IRIS), in Cape Town, South Africa. Sputum and plasma MMP concentrations were quantified by Luminex, plasma procollagen III N-terminal propeptide (PIIINP) by enzyme-linked immunosorbent assay, and urinary lipoarabinomannan (LAM) by Alere Determine TB LAM assay. Peripheral blood mononuclear cells from healthy donors were cultured with Mycobacterium tuberculosis and extracellular matrix in a 3D model of TB granuloma formation. Results: MMP activity differed between HIV-1-infected and -uninfected TB patients and corresponded with specific TB clinical phenotypes. HIV-1-infected TB patients had reduced pulmonary MMP concentrations, associated with reduced cavitation, but increased plasma PIIINP, compared to HIV-1-uninfected TB patients. Elevated extrapulmonary extracellular matrix turnover was associated with TB-IRIS, both before and during TB-IRIS onset. The predominant collagenase was MMP-8, which was likely neutrophil derived and M. tuberculosis-antigen driven. Mycobacterium tuberculosis-induced matrix degradation was suppressed by the MMP inhibitor doxycycline in vitro. Conclusions: MMP activity in TB differs by HIV-1 status and compartment, and releases matrix degradation products. Matrix turnover in HIV-1-infected patients is increased before and during TB-IRIS, informing novel diagnostic strategies. MMP inhibition is a potential host-directed therapy strategy for prevention and treatment of TB-IRIS

    Paradoxical upgrading reaction in extra-pulmonary tuberculosis: association with vitamin D therapy

    Get PDF
    SETTING: Glasgow, Scotland, UK. BACKGROUND: Paradoxical reactions in tuberculosis (TB) are a notable example of our incomplete understanding of host-pathogen interactions during anti-tuberculosis treatment. OBJECTIVES: To determine risk factors for a TB paradoxical reaction, and specifically to assess for an independent association with vitamin D use. DESIGN: Consecutive human immunodeficiency virus (HIV) negative adult patients treated for extra-pulmonary TB were identified from an Extended Surveillance of Mycobacterial Infections database. In our setting, vitamin D was variably prescribed for newly diagnosed TB patients. A previously published definition of paradoxical TB reaction was retrospectively applied to, and data on all previously described risk factors were extracted from, centralised electronic patient records. The association with vitamin D use was assessed using multivariate logistic regression. RESULTS: Of the 249 patients included, most had TB adenopathy; 222/249 had microbiologically and/or histologically confirmed TB. Vitamin D was prescribed for 57/249 (23%) patients; 37/249 (15%) were classified as having paradoxical reactions. Younger age, acid-fast bacilli-positive invasive samples, multiple disease sites, lower lymphocyte count and vitamin D use were found to be independent risk factors. CONCLUSION: We speculate that vitamin D-mediated signalling of pro-inflammatory innate immune cells, along with high antigenic load, may mediate paradoxical reactions in anti-tuberculosis treatment

    Neutrophil-Associated Central Nervous System Inflammation in Tuberculous Meningitis Immune Reconstitution Inflammatory Syndrome.

    No full text
    Background. The immunopathogenesis of tuberculosis-associated immune reconstitution inflammatory syndrome (IRIS) remains incompletely understood, and we know of only 1 disease site-specific study of the underlying immunology; we recently showed that Mycobacterium tuberculosis culture positivity and increased neutrophils in the cerebrospinal fluid (CSF) of patients with tuberculous meningitis (TBM) are associated with TBM-IRIS. In this study we investigated inflammatory mediators at the disease site in patients with TBM-IRIS. Methods. We performed lumbar puncture at 3–5 time points in human immunodeficiency virus (HIV)–infected patients with TBM (n = 34), including at TBM diagnosis, at initiation of antiretroviral therapy (ART) (day 14), 14 days after ART initiation, at presentation of TBM-IRIS, and 14 days thereafter. We determined the concentrations of 40 mediators in CSF (33 paired with blood) with Luminex or enzyme-linked immunosorbent assays. Findings were compared between patients who developed TBM-IRIS (n = 16) and those who did not (TBM-non-IRIS; n = 18). Results. At TBM diagnosis and 2 weeks after ART initiation, TBM-IRIS was associated with severe, compartmentalized inflammation in the CSF, with elevated concentrations of cytokines, chemokines, neutrophil-associated mediators, and matrix metalloproteinases, compared with TBM-non-IRIS. Patients with TBM-non-IRIS whose CSF cultures were positive for M. tuberculosis at TBM diagnosis (n = 6) showed inflammatory responses similar to those seen in patients with TBM-IRIS at both time points. However, at 2 weeks after ART initiation, S100A8/A9 was significantly increased in patients with TBM-IRIS, compared with patients with TBM-non-IRIS whose cultures were positive at baseline. Conclusions. A high baseline M. tuberculosis antigen load drives an inflammatory response that manifests clinically as TBM-IRIS in most, but not all, patients with TBM. Neutrophils and their mediators, especially S100A8/A9, are closely associated with the central nervous system inflammation that characterizes TBM-IRIS

    Plasma Biomarkers to Detect Prevalent or Predict Progressive Tuberculosis Associated With Human Immunodeficiency Virus–1

    Get PDF
    Background The risk of HIV-1 infected individuals developing TB is high while both prognostic and diagnostic tools remain insensitive. The predictive performance of plasma biomarkers to identify HIV-1 infected individuals likely to progress to active disease is unknown. Methods Thirteen preselected analytes were determined from QuantiFERON® Gold in-tube (QFT) plasma samples in 421 HIV-1 infected persons recruited within the screening and enrolment phases of a randomised controlled trial of isoniazid preventive therapy. Blood for QFT was obtained pre-randomisation. Individuals were classified into prevalent TB, incident TB and controls. Comparisons between groups, supervised learning methods and weighted correlation network analyses were applied utilising the unstimulated and background-corrected plasma analyte concentrations. Results Unstimulated samples showed higher analyte concentrations in prevalent and incident TB compared to controls. The largest differences were seen for CXCL10, IL-2, IL-1 and TGF-. Predictive model analysis using unstimulated analytes discriminated better between controls and prevalent TB (Area Under the Curve AUC= 0·9), reasonably between incident and prevalent TB (AUC > 0·8), but poorly between controls and incident TB. Unstimulated IL-2 and IFN-γ were ranked at or near the top for all comparisons except the comparison between controls vs incident TB. Models using background adjusted values performed poorly. Conclusions Single plasma biomarkers are unlikely to distinguish between disease states in HIV-1 co-infected individuals and combinations of biomarkers are required. The ability to detect prevalent TB is potentially important, as no blood test hitherto has suggested utility to detect prevalent TB amongst HIV-1 co-infected persons

    Plasma Biomarkers to Detect Prevalent or Predict Progressive Tuberculosis Associated With Human Immunodeficiency Virus-1

    Get PDF
    BACKGROUND: The risk of individuals infected with human immunodeficiency virus (HIV)-1 developing tuberculosis (TB) is high, while both prognostic and diagnostic tools remain insensitive. The potential for plasma biomarkers to predict which HIV-1-infected individuals are likely to progress to active disease is unknown. METHODS: Thirteen analytes were measured from QuantiFERON Gold in-tube (QFT) plasma samples in 421 HIV-1-infected persons recruited within the screening and enrollment phases of a randomized, controlled trial of isoniazid preventive therapy. Blood for QFT was obtained pre-randomization. Individuals were classified into prevalent TB, incident TB, and control groups. Comparisons between groups, supervised learning methods, and weighted correlation network analyses were applied utilizing the unstimulated and background-corrected plasma analyte concentrations. RESULTS: Unstimulated samples showed higher analyte concentrations in the prevalent and incident TB groups compared to the control group. The largest differences were seen for C-X-C motif chemokine 10 (CXCL10), interleukin-2 (IL-2), IL-1α, transforming growth factor-α (TGF-α). A predictive model analysis using unstimulated analytes discriminated best between the control and prevalent TB groups (area under the curve [AUC] = 0.9), reasonably well between the incident and prevalent TB groups (AUC > 0.8), and poorly between the control and incident TB groups. Unstimulated IL-2 and IFN-γ were ranked at or near the top for all comparisons, except the comparison between the control vs incident TB groups. Models using background-adjusted values performed poorly. CONCLUSIONS: Single plasma biomarkers are unlikely to distinguish between disease states in HIV-1 co-infected individuals, and combinations of biomarkers are required. The ability to detect prevalent TB is potentially important, as no blood test hitherto has been suggested as having the utility to detect prevalent TB amongst HIV-1 co-infected persons

    Complement pathway gene activation and rising circulating immune complexes characterize early disease in HIV-associated tuberculosis

    Get PDF
    The transition between latent and active tuberculosis (TB) occurs before symptom onset. Better understanding of the early events in subclinical disease will facilitate the development of diagnostics and interventions that improve TB control. This is particularly relevant in the context of HIV-1 coinfection where progression of TB is more likely. In a recent study using [18F]-fluoro-2-deoxy-D-glucose positron emission/computed tomography (FDG-PET/CT) on 35 asymptomatic, HIV-1–infected adults, we identified 10 participants with radiographic evidence of subclinical disease, significantly more likely to progress than the 25 participants without. To gain insight into the biological events in early disease, we performed blood-based whole genome transcriptomic analysis on these participants and 15 active patients with TB. We found transcripts representing the classical complement pathway and Fcγ receptor 1 overabundant from subclinical stages of disease. Levels of circulating immune (antibody/antigen) complexes also increased in subclinical disease and were highly correlated with C1q transcript abundance. To validate our findings, we analyzed transcriptomic data from a publicly available dataset where samples were available in the 2 y before TB disease presentation. Transcripts representing the classical complement pathway and Fcγ receptor 1 were also differentially expressed in the 12 mo before disease presentation. Our results indicate that levels of antibody/antigen complexes increase early in disease, associated with increased gene expression of C1q and Fcγ receptors that bind them. Understanding the role this plays in disease progression may facilitate development of interventions that prevent this, leading to a more favorable outcome and may also be important to diagnostic development
    • …
    corecore