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Abstract(200 words, including titles):  37 

 38 

Purpose of review 39 

Tuberculosis is the leading infectious cause of death worldwide, and HIV-1 the best 40 

recognized risk factor for active TB.  This review focuses on immune complex formation; the 41 

interplay of type I and II interferon signaling; and T cell activation in HIV-TB pathogenesis.  42 

Recent findings 43 

Circulating immune complexes and complement, and Fc signaling in whole blood act as 44 

early markers of TB disease in HIV-1 infected persons. HIV-1 is associated with a type I 45 

interferon response in whole blood, reducing the specificity of TB biomarkers dependent on 46 

type I and II interferon genes.  Type I and type II interferons are implicated in both 47 

protection and TB pathology, a protective outcome may depend on modulating these 48 

pathways. Whilst Mtb-specific CD4 T cells are preferentially depleted during HIV-1 infection, 49 

activation markers on Mtb-specific CD4 T cells, in particular HLA-DR, reflect immune 50 

activation and have promise as biomarkers of Mtb disease activity in individuals with HIV-1.  51 

Summary  52 

TB pathogenesis in HIV-1 involves a complex interaction of underlying activation of both the 53 

innate and adaptive immune systems.  Further research is required to understand whether 54 

biomarkers of activation could be used to predict or quantify TB disease in the context of 55 

HIV-1 infection. 56 

 57 

Keywords: tuberculosis, HIV-1, interferon, immune complex, systemic activation   58 
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The pathogenesis of HIV-TB co-infection (2472 words) 59 

 60 

Introduction 61 

Tuberculosis (TB) recently replaced HIV-1 as the leading infectious cause of death 62 

worldwide, causing an estimated 1.7 million deaths in 2016, of whom 374,000 were HIV-1 63 

infected persons(1). The true burden of TB in those with HIV-1 may be an underestimate, as 64 

post mortem studies have found TB in 40% of those who had died of HIV-1(2). HIV-1 65 

significantly increases the risk of active tuberculosis (3). Equally, TB is thought to accelerate 66 

HIV-1 progression, creating an environment that promotes viral replication(4).  67 

 68 

Understanding the pathogenesis of HIV-TB co-infection is essential to the development of 69 

much needed new biomarkers, diagnostics and vaccines, as previously reviewed(4). This 70 

review focuses on three recent and notable facets in our understanding of HIV-TB co-71 

infection; firstly, the role of immune complex formation in early co-infection, secondly, the 72 

role of type I and II interferon signaling, and finally, the impact of markers of T cell 73 

activation during co-infection.  74 

 75 

Immune complex formation in the pathogenesis of early HIV-TB  76 

 77 

The clinical presentation of TB in HIV-1 infected persons varies by CD4 count. Those with 78 

high CD4 counts (>350 cells/mm3) present similarly to HIV-1 uninfected persons, albeit with 79 

increased incidence(4). The higher incidence of unique isolates of Mycobacterium 80 

tuberculosis (Mtb) by molecular typing in early HIV supports the notion that previously 81 

acquired Mtb infection is reactivated (5). By contrast presentation in those with low CD4 82 

counts (<100/mm3) is frequently disseminated reflecting progression of disease following 83 

recent infection or reinfection, supported by increased clustering of Mtb by molecular 84 

typing in persons with advanced HIV-1 infection(5).  85 

 86 
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The importance of the granuloma and the role CD4 T cells play in the initial control of TB 87 

infection is clear, however less is known about the pathogenesis of early disease that occurs 88 

following failure of granulomatous control.  We have recently shown that 2-deoxy-2-89 

[18F]fluoro-D-glucose positron emission and computed tomography (FDG-PET/CT) can be 90 

used as a research tool to investigate early disease. In a study of 35 asymptomatic, HIV-1 91 

infected persons with CD4 > 350 cells/mm3, no previous history of TB treatment, positive 92 

IFN- release assay, and negative microbiological screening culture we demonstrated that 93 

10 had abnormalities consistent with subclinical disease. Of these, 90% had evidence of 94 

infiltrates and/or fibrotic scarring in the upper lobes in a distribution typically seen in HIV 95 

uninfected adults.  Those with evidence of subclinical disease were significantly more likely 96 

to experience symptomatic disease progression(6*).   97 

 98 

HIV-1 infected adults with subclinical TB, identified by FDG-PET/CT, had an increased 99 

abundance of transcripts in whole blood relating to the classical complement pathway and 100 

Fc receptors, when compared to HIV-1 infected adults without active TB(7**). This increase 101 

has subsequently been observed in HIV-1 uninfected persons prior to TB disease 102 

presentation(8). Increasing complement transcript abundance correlates with increasing 103 

levels of circulating immune complexes (CIC), which bind complement and Fc receptors 104 

and C1q, that were also elevated in those with subclinical disease (Figure 1.) (7**).  Elevated 105 

levels of CIC in active TB, even in those culture negative, in HIV-1 uninfected persons is 106 

recognised(9). The role that immune complexes may play in the pathogenesis of early 107 

tuberculosis disease in persons of differing levels of immunocompetence is yet to be fully 108 

determined(9), however recent evidence suggests this may be a critical stage in disease 109 

progression(10).   110 

 111 

Mycobacterial antigen can be detected within Mtb uninfected cells, in early stages of 112 

disease even when overall numbers of visible acid-fast bacilli are low(11,12).  Of note, it has 113 

previously been shown that mRNA levels of the secreted Ag85B increase 14.6-fold in 114 

comparison to 16S ribosomal rRNA in the first 24-hours of intracellular infection, and are 115 
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enhanced by exogenous and endogenous TNF-(13).  Recently, Srivastava et al. described 116 

intracellular Mtb as able to release free antigen extracellularly via kinesin-2 dependent 117 

antigen export vesicles, which facilitate cell-to-cell antigen transfer in part as an immune 118 

evasion strategy(14,15).  B-cell clusters are frequently identified within TB lesions and free 119 

antigen released extracellularly could form immune complexes with locally produced 120 

antibody(12,16,17).  Solubilization of immune complexes is critical to prevent local 121 

precipitation in tissue and in situ triggering of the pro-inflammatory complement 122 

cascade(18).  This solubilisation is initially facilitated by binding of C1q to immune 123 

complexes, which prevent larger complexes forming, and may account for increases in C1q 124 

expression at the site of disease(19,20).  Similarly, increased expression of Fc receptor 125 

would facilitate intracellular take up of antigen.  Ridley and Ridley observed in a detailed 126 

histopathological study of 31 cases of TB, that when antigen was phagocytosed within 127 

mononuclear cells there was little noxious effect to surrounding tissue.  However, where 128 

antigen was externalised, bound to the interstitial connective tissue and associated with 129 

complement this was associated with evidence of localised necrosis(12).  Hunter established 130 

that antigen increase precedes tissue necrosis leading to a significant increase in bacillary 131 

numbers(11).  Taken together this suggests that, in both HIV-1 infected (with high CD4 132 

counts) and in HIV-1 uninfected adults, extracellular free antigen release may occur early in 133 

TB disease while bacillary numbers are low. Immune complex formation may simultaneously 134 

benefit the pathogen (facilitating cell-to-cell transfer of antigen and immune evasion) and 135 

be harmful to the host (resulting in complement mediated immunopathology). 136 

 137 

Interplay of interferon signalling in the pathogenesis of HIV-TB 138 

 139 

One of the most well studied groups of signalling proteins involved in HIV-1 and Mtb 140 

infections are the interferons (IFNs). Type 1 interferons (IFN-/) are classically induced by 141 

HIV-1 infection and type 2 IFN (IFN-) by Mtb infection(21). Blood transcriptional profiling of 142 

TB patients has identified a role for neutrophil-driven type I and II IFN in TB disease(7**,22), 143 

suggesting there may be an interaction between these signalling pathways in individuals 144 

infected with HIV-1 and Mtb. 145 
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 146 

Whole blood transcriptomics has provided insight into disease pathogenesis in tuberculosis 147 

and more recently in predicting disease development(7**,22,23).  Zak et al. have shown 148 

that the whole blood abundance of 16 gene transcript pairs, recently reduced to 11 gene 149 

transcript pairs in peripheral blood mononuclear cells (PBMC) with equal sensitivity and 150 

specificity(24),  can predict disease progression over a 12 month period in HIV-1 uninfected 151 

adolescents(8). This signature is dominated by IFN-inducible transcripts and has reduced 152 

diagnostic specificity for HIV-TB disease (7**,23,25*). Moreover, whilst IFN-based 153 

transcriptional signatures poorly discriminate HIV-1 from TB-HIV, we found IFN- and 154 

CXCL10 protein levels in serum contributed to a signature predicting TB risk in HIV-1 155 

infected individuals (unpublished data), which was verified in a cohort of advanced HIV-TB 156 

co-infected patients with a CD4 count <100 cells/mm3 (7**,25*). Interestingly, high 157 

circulating CXCL10 inhibits CXCR3+ NK cell function during HIV-1(26), suggesting that 158 

excessive interferon signalling induced by HIV-1 may inhibit host Mtb responses, due to 159 

diminished NK IFN- production. Therefore understanding the role of interferons in disease 160 

progression is key, as the higher baseline threshold of IFN signalling in individuals with HIV-161 

1(27) may lead to quicker TB disease progression.  162 

 163 

Transcriptomic modular approaches combined with whole blood deconvolution have 164 

indicated that IFN signalling in HIV-1 is not restricted to a single cell type, but occurs in 165 

multiple cell types, including neutrophils and B cells (Figure 1) (28). Interestingly, B cells 166 

from mice infected with Mtb induce type I IFN via a key protein, Stimulator of IFN Genes 167 

(STING) and, to a lesser extent, the C-type lectin Mincle signalling. This modulates 168 

macrophage polarization towards an M2-type anti-inflammatory phenotype(29) which 169 

would be predicted to lead to a poorer outcome following Mtb infection. Furthermore, B 170 

cells isolated from pericardial fluid from TB patients display higher type I IFN transcripts 171 

than in the blood, indicating B cells also contribute to type I IFN signalling at disease 172 

site(29).  173 

 174 



 8 

IFNs play a crucial antiviral role during acute HIV-1 infection, preventing productive viral 175 

infection through induction of host restriction factors, including the apolipoprotein B mRNA 176 

editing enzyme, catalytic polypeptide-like 3G (APOBEC3) family of proteins, tetherin and 177 

recently identified guanylate binding protein 5 (GBP5),(30–32*) the latter also being a 178 

frequent component of whole blood signatures predicting TB risk(8). HIV-1 infection in turn 179 

inhibits type I IFN production by T cells through expression of HIV encoded proteins, Nef and 180 

Tat, inhibiting IFN-β promoter stimulator-1 (IPS-1), an innate immune viral RNA sensing 181 

adaptor protein. Blocking of antiviral IPS-1 signalling, restriction factors and therefore IFN 182 

induction, results in increased HIV-1 replication (reviewed in (33)).  183 

 184 

Although type II IFN is generally thought to promote protection during initial Mtb infection, 185 

both type I and II IFN signalling have each been shown to promote protection as well as 186 

drive pathology, depending on the timing of infection and disease and the context of 187 

modulation (reviewed in (34–36)). Excessive type I IFN signalling is associated with 188 

eicosanoid imbalance resulting in inefficient bacterial containment and disease 189 

exacerbation, suggesting that type I IFN may counteract the immunoprotective effects of 190 

type II IFN on Mtb infection(37).   191 

 192 

This intricate balance was further dissected by Yan and colleagues who showed that mice 193 

deficient in Absence in Melanoma 2 (AIM2) expressed higher levels of IFN-β and suppressed 194 

IFN-γ signalling, resulting in higher infection burdens and more severe pathology (38**) . 195 

They showed that AIM2 induction of apoptosis-associated speck-like protein (ASC) results in 196 

interaction with STING, inhibiting the interaction between STING and downstream TANK-197 

binding kinase 1, (TBK1) which interacts with interferon regulatory factor 3 (IRF3), 198 

consequently reducing the release of type I IFN, in bone marrow–derived macrophages and 199 

bone marrow–derived dendritic cells (Figure 1).  200 

 201 

A recent study has shown that the product of one of the most highly induced IFN stimulated 202 

genes (ISGs), ISG15, can dually promote and protect against Mtb infection depending on the 203 
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stage of disease. They demonstrated that ISG15 along with type I IFN promote bacterial 204 

replication during early infection. However, as the infection progresses, ISG15 switches to a 205 

more protective role, demonstrated by an increased susceptibility to infection observed in 206 

mice deficient of ISG15(39). The authors hypothesise that differential regulation of ISGs 207 

between people may lead to different disease outcomes.   208 

 209 

 210 

Depletion of Mtb-specific CD4 T cells and the impact of T cell activation during HIV-TB co-211 

infection 212 

Although TB risk is associated with lower peripheral CD4 T cell count(40) it is also observed 213 

early after HIV-1 seroconversion in persons with relatively well-preserved peripheral CD4 T 214 

cell counts(5,41), as well as in persons on antiretroviral therapy (ART) (42,43). This has 215 

prompted further investigation into the role of selective depletion and qualitative 216 

differences in function of Mtb-specific CD4 T cells during HIV-1 infection.  217 

  218 

There is evidence that Mtb-specific CD4 T cells are preferentially depleted during HIV-TB co-219 

infection, a phenomenon not observed during co-infection with other pathogens such as 220 

cytomegalovirus(44). This is thought to be driven by increased surface expression of CCR5 (a 221 

co-receptor used by R5 strains of HIV-1 to gain cellular entry) and low expression of 222 

macrophage inflammatory protein-1β (CCL4, a natural ligand of CCR5) on Mtb-specific CD4 T 223 

cells, with this being a prominent feature of lung resident Mtb-specific CD4 T cells(45–47).  A 224 

study using Mtb-specific major histocompatibility complex (MHC) class II tetramers reported 225 

a 52% lower absolute number of Mtb-specific tetramer+ CD4 T cells in HIV-1 infected versus 226 

uninfected participants with LTBI(48**). Interestingly, despite low CD4 T cell counts (median 227 

105 cells/mmᶾ), HIV-1 infected participants with active TB had comparable absolute 228 

numbers of Mtb-specific tetramer+ CD4 T cells to those of HIV-1 uninfected participants with 229 

active TB. This demonstrates that co-infection with HIV-1 does not impair Mtb-specific CD4 230 

T cells’ ability to expand in response to replicating Mtb. 231 

  232 

HIV-1 infection also mediates depletion of Mtb-specific CD4 T cells at the site of disease 233 

(Figure 1). Four studies have reported decreased frequency of Mtb-specific CD4 T cells in 234 
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broncho-alveolar lavage (BAL) samples of HIV-1 infected compared to HIV-1 uninfected 235 

healthy persons(47,49–52). The most recent of these studies by Bunjun et al. included HIV-1 236 

infected, IFN-γ release assay (IGRA) positive participants who were ART-naive with relatively 237 

preserved CD4 T cell counts (median of 619 cells/mmᶾ) as well as HIV-1 uninfected controls. 238 

In contrast with previous studies, a significantly higher number of CD3+ lymphocytes were 239 

observed in the BAL of HIV-1 infected participants compared to HIV-1 uninfected 240 

participants(53*). This comprised a 26-fold higher number of CD8 T cells and 7-fold higher 241 

number of CD4 T cells(53*), with both CD4 and CD8 T cell numbers showing significant 242 

correlation to BAL HIV-1 viral load, as seen in HIV-1 associated lymphocytic alveolitis(54). 243 

There was no significant difference in absolute number of Mtb-specific CD4 T cells in BAL of 244 

HIV-1 infected versus HIV-1 uninfected participants once adjusted for the higher number of 245 

CD4 T cells found in the HIV-1 infected group. The decreased frequency of Mtb-specific CD4 246 

T cells was thus counteracted by HIV-1 mediated CD4 T cell influx, resulting in comparable 247 

absolute numbers of Mtb-specific CD4 T cells to that of HIV-1 uninfected participants. 248 

Although evidence from longitudinal studies are lacking it could be postulated that the 249 

findings of Bunjun et al. are representative of early HIV-1 infection, with the three prior 250 

studies being representative more advanced HIV-1 infection as evidenced by lower median 251 

CD4 count in their HIV-1 infected participant groups.  252 

  253 

It is recognised that co-infection with Mtb contributes to immune activation observed in 254 

HIV-1 infection and that activation is associated with a higher risk of opportunistic infection 255 

and death(55–57). Several markers have been associated with immune activation e.g. CD38, 256 

programmed death receptor 1 (PD-1), Ki-67 and HLA-DR(60–63**). Riou et al. showed that 257 

there is higher HLA-DR expression on Mtb-specific cells from HIV-1 infected compared to 258 

HIV-1 uninfected persons both in LTBI and active TB(61**). In the HIV-1 infected LTBI group 259 

HLA-DR expression was similar to that observed in the bulk CD4 T cell compartment and 260 

thus indicative of HIV-1 mediated systemic immune activation. Activated CD4 T cells 261 

expressing CD26 and HLA-DR have also been implicated as sources of HIV replication during 262 

HIV-TB co-infection, thus accelerating HIV-1 disease progression(62). There is evidence that 263 

systemic immune activation also imparts higher TB risk. In a cohort of HIV-1 unexposed, BCG 264 

vaccinated infants the frequency of activated HLA-DR+ CD4 T cells correlated with TB risk, 265 

with the highest risk being observed in those with the highest levels of response(63). In turn 266 
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these findings were confirmed in a cohort of HIV-1 uninfected adolescents(63). HLA-DR 267 

expression on Mtb-specific CD4 T cells holds promise as biomarker of disease activity during 268 

HIV-TB co-infection and could be explored by future longitudinal studies as predictive 269 

biomarker of TB risk in HIV-1 infection. 270 

 271 

 272 

Conclusions 273 

 274 

Recent evidence emphasizes the diversity and complexity of the immune response to TB in 275 

persons infected with HIV. Using novel FDG-PET/CT imaging to identify HIV infected 276 

individuals with early TB disease, circulating immune complexes are a hallmark of TB risk 277 

and may contribute to disease progression. Type I and type II interferons have both been 278 

shown to promote protection as well as pathology, depending on timing and context of 279 

modulation. Mtb-specific CD4 T cells are preferentially depleted by HIV-1, but still retain 280 

their ability to expand in response to Mtb. CD4 T cell expression of HLA-DR may be a useful 281 

marker of systemic immune activation and disease activity in HIV-TB co-infection. 282 

 283 

Figure 1. 284 

Interplay of immune activation driving HIV-Mtb pathogenesis.  285 

Elevated levels of circulating immune complexes found in early stages of HIV-TB co-infection 286 

are associated with localised tissue necrosis and may lead to increased bacillary numbers. 287 

The immunoprotective effects of type II IFN on Mtb infection in macrophages co-infected 288 

with HIV-1 are suppressed by the excessive type I IFN signalling, which leads to inhibition of 289 

IFN and  IL-1 signalling and inefficient containment of Mtb infection and disease 290 

exacerbation.  AIM2 induction of ASC, which blocks STING interacting with TBK1 can inhibit 291 

IFNα/β, potentially improving outcomes. Type I interferon can also induce expression of HIV 292 

restriction factors; a mechanism that is further inhibited by HIV proteins Nef and Tat. An 293 

increase in HIV replication leads to infection of Mtb-specific CD4 T cells mediated through 294 

their increased expression of CCR5 and decreased expression of CCL4. They are however 295 

able to expand numerically in response to replicating Mtb. The influx of CD4 T cells to the 296 
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lung during early HIV-1 infection of persons with latent TB infection (LTBI) present new 297 

targets for HIV-1 infection.  298 

 299 

Key points:  300 

 Circulating immune complexes are markers of early disease progression in HIV-TB 301 

 Type I and II interferon signalling are potential targets to reduce HIV-TB driven 302 

pathology   303 

 Systemic immune activation precedes CD4 T cell depletion as a factor of HIV-TB risk 304 

but is reflected in HLA-DR expression on CD4 T cells that may be a useful marker of 305 

disease activity during HIV-TB co-infection 306 

 307 
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