499 research outputs found

    The physical origin of the X-ray power spectral density break timescale in accreting black holes

    Full text link
    X-ray variability of active galactic nuclei (AGN) and black hole binaries can be analysed by means of the power spectral density (PSD). The break observed in the power spectrum defines a characteristic variability timescale of the accreting system. The empirical variability scaling that relates characteristic timescale, black hole mass, and accretion rate (TBMBH2.1/M˙0.98T_B \propto M_{BH}^{2.1}/\dot{M}^{0.98}) extends from supermassive black holes in AGN down to stellar-mass black holes in binary systems. We suggest that the PSD break timescale is associated with the cooling timescale of electrons in the Comptonisation process at the origin of the observed hard X-ray emission. We obtain that the Compton cooling timescale directly leads to the observational scaling and naturally reproduces the functional dependence on black hole mass and accretion rate (tCMBH2/M˙t_C \propto M_{BH}^{2}/\dot{M}). This result simply arises from general properties of the emission mechanism and is independent of the details of any specific accretion model.Comment: 4 pages, accepted for publication in Astronomy and Astrophysics, Letters to the Edito

    BeppoSAX observations of the quasar Markarian 205

    Full text link
    We present the first BeppoSAX observation (0.1 to 220 keV) of the quasar Mrk 205. We have searched for the unusual Fe line profile claimed in the XMM-Newton spectrum which has been widely discussed in recent literature. We find no evidence for a broad, ionized Fe line component in our data. We detect for the first time a Compton hump in this object. Besides, when this component is included in the fit, the line strength diminishes, in agreement with a recent re-analysis of the XMM-Newton data, but with better constraints on the reflection component thanks to the PDS instrument (15-220 keV). We interpret this fact as another indication for illumination of a distant and cold material rather than reprocessing in the highly ionized inner parts of an accretion disk. We cannot constrain the presence of a high energy cutoff but we confirm the existence of a variable soft excess (one year timescale).Comment: 13 pages, 12 figures, accepted for publication in A&

    Synchrotron radio emission in radio-quiet AGNs

    Full text link
    The basic mechanism responsible for radio emission in radio-loud active galactic nuclei (AGNs) is assumed to be synchrotron radiation. We suggest here that radio emission in radio-quiet objects is also due to synchrotron radiation of particles accelerated in shocks. We consider generic shocks and study the resulting synchrotron properties. We estimate the synchrotron radio luminosity and compare it with the X-ray component produced by inverse Compton emission. We obtain that the radio to X-ray luminosity ratio is much smaller than unity, with values typical of radio-quiet sources. The predicted trends on source parameters, black hole mass and accretion rate, may account for the anticorrelation between radio-loudness and Eddington ratio observed in different AGN samples.Comment: 5 pages, accepted for publication in Astronomy and Astrophysic

    Resolving the Host Galaxy of the Nearby QSO I Zw 1 with Sub-Arcsecond Multi-Transition Molecular Line Observations

    Full text link
    We present the first sub-kpc 0.7" (~ 850 pc) resolution 12CO(1-0) molecular line observations of the ISM in the host galaxy of the QSO I Zw 1. The observations were obtained with the BIMA mm-interferometer in its compact A configuration. The BIMA data are complemented by new observations of the 12CO(2-1) and 13CO(1-0) line with IRAM Plateau de Bure mm-interferometer (PdBI) at 0.9" and 1.9" resolution, respectively. These measurements, which are part of a multi-wavelength study of the host galaxy of I Zw 1, are aimed at comparing the ISM properties of a QSO host with those of nearby galaxies as well as to obtain constraints on galaxy formation/evolution models. Our images of the 12CO(1-0) line emission show a ring-like structure in the circumnuclear molecular gas distribution with an inner radius of about 1.2 kpc. The presence of such a molecular gas ring was predicted from earlier lower angular resolution PdBI 12CO(1-0) observations. A comparison of the BIMA data with IRAM PdBI 12CO(2-1) observations shows variations in the excitation conditions of the molecular gas in the innermost 1.5" comprising the nuclear region of I Zw 1. The observed properties of the molecular cloud complexes in the disk of the host galaxy suggest that they can be the sites of massive circumnuclear star formation, and show no indications of excitation by the nuclear AGN. This all indicates that the molecular gas in a QSO host galaxy has similar properties to the gas observed in nearby low luminosity AGNs.Comment: to be published in ApJ 1 July 2004 issu

    High-Energy sources before INTEGRAL -- INTEGRAL reference catalog --

    Full text link
    We describe the INTEGRAL reference catalog which classifies previously known bright X-ray and gamma-ray sources before the launch of INTEGRAL. These sources are, or have been at least once, brighter than ~1 mCrab above 3 keV, and are expected to be detected by INTEGRAL. This catalog is being used in the INTEGRAL Quick Look Analysis to discover new sources or significantly variable sources. We compiled several published X-ray and gamma-ray catalogs, and surveyed recent publications for new sources. Consequently, there are 1122 sources in our INTEGRAL reference catalog. In addition to the source positions, we show an approximate spectral model and expected flux for each source, based on which we derive expected INTEGRAL counting rates. Assuming the default instrument performances and at least ~10^5 sec exposure time for any part of the sky, we expect that INTEGRAL will detect at least ~700 sources below 10 keV and ~400 sources above 20 keV over the mission life.Comment: Accepted to A&A Letter INTEGRAL special issu
    corecore