254 research outputs found

    Mechanisms of Surviving Burial: Dune Grass Interspecific Differences Drive Resource Allocation After Sand Deposition

    Get PDF
    Sand dunes are important geomorphic formations of coastal ecosystems that are critical in protecting human populations that live in coastal areas. Dune formation is driven by ecomorphodynamic interactions between vegetation and sediment deposition. While there has been extensive research on responses of dune grasses to sand burial, there is a knowledge gap in understanding mechanisms of acclimation between similar, coexistent, dune-building grasses such as Ammophila breviligulata (C3), Spartina patens (C4), and Uniola paniculata (C4). Our goal was to determine how physiological mechanisms of acclimation to sand burial vary between species. We hypothesize that (1) in the presence of burial, resource allocation will be predicated on photosynthetic pathway and that we will be able to characterize the C3 species as a root allocator and the C4 species as leaf allocators. We also hypothesize that (2) despite similarities between these species in habitat, growth form, and life history, leaf, root, and whole plant traits will vary between species when burial is not present. Furthermore, when burial is present, the existing variability in physiological strategy will drive species-specific mechanisms of survival. In a greenhouse experiment, we exposed three dune grass species to different burial treatments: 0 cm (control) and a one-time 25-cm burial to mimic sediment deposition during a storm. At the conclusion of our study, we collected a suite of physiological and morphological functional traits. Results showed that Ammophila decreased allocation to aboveground biomass to maintain root biomass, preserving photosynthesis by allocating nitrogen (N) into light-exposed leaves. Conversely, Uniola and Spartina decreased allocation to belowground production to increase elongation and maintain aboveground biomass. Interestingly, we found that species were functionally distinct when burial was absent; however, all species became more similar when treated with burial. In the presence of burial, species utilized functional traits of rapid growth strategy, although mechanisms of change were interspecifically variable

    Precision is in the Eye of the Beholder: Application of Eye Fixation-Related Potentials to Information Systems Research

    Get PDF
    This is the final version. Available from Association for Information Systems via the DOI in this recordThis paper introduces the eye-fixation related potential (EFRP) method to IS research. The EFRP method allows one to synchronize eye tracking with electroencephalographic (EEG) recording to precisely capture users’ neural activity at the exact time at which they start to cognitively process a stimulus (e.g., event on the screen). This complements and overcomes some of the shortcomings of the traditional event related potential (ERP) method, which can only stamp the time at which a stimulus is presented to a user. Thus, we propose a method conjecture of the superiority of EFRP over ERP for capturing the cognitive processing of a stimulus when such cognitive processing is not necessarily synchronized with the time at which the stimulus appears. We illustrate the EFRP method with an experiment in a natural IS use context in which we asked users to read an industry report while email pop-up notifications arrived on their screen. The results support our proposed hypotheses and show three distinct neural processes associated with 1) the attentional reaction to email pop-up notification, 2) the cognitive processing of the email pop-up notification, and 3) the motor planning activity involved in opening or not the email. Furthermore, further analyses of the data gathered in the experiment serve to validate our method conjecture about the superiority of the EFRP method over the ERP in natural IS use contexts. In addition to the experiment, our study discusses important IS research questions that could be pursued with the aid of EFRP, and describes a set of guidelines to help IS researchers use this method.Social Sciences and Humanities Research Council of Canada (SSHRC)Natural Sciences and Engineering Research Council of CanadaFonds QuĂ©bĂ©cois pour la Recherche sur la SociĂ©tĂ© et la Culture (FQRSC)Fonds de recherche Nature et Technologies (FQRNT

    The Dynamics of Sustained Reentry in a Loop Model with Discrete Gap Junction Resistance

    Full text link
    Dynamics of reentry are studied in a one dimensional loop of model cardiac cells with discrete intercellular gap junction resistance (RR). Each cell is represented by a continuous cable with ionic current given by a modified Beeler-Reuter formulation. For RR below a limiting value, propagation is found to change from period-1 to quasi-periodic (QPQP) at a critical loop length (LcritL_{crit}) that decreases with RR. Quasi-periodic reentry exists from LcritL_{crit} to a minimum length (LminL_{min}) that is also shortening with RR. The decrease of Lcrit(R)L_{crit}(R) is not a simple scaling, but the bifurcation can still be predicted from the slope of the restitution curve giving the duration of the action potential as a function of the diastolic interval. However, the shape of the restitution curve changes with RR.Comment: 6 pages, 7 figure

    From Labyrinthine Patterns to Spiral Turbulence

    Full text link
    A new mechanism for spiral vortex nucleation in nongradient reaction diffusion systems is proposed. It involves two key ingredients: An Ising-Bloch type front bifurcation and an instability of a planar front to transverse perturbations. Vortex nucleation by this mechanism plays an important role in inducing a transition from labyrinthine patterns to spiral turbulence. PACS numbers: 05.45.+b, 82.20.MjComment: 4 pages uuencoded compressed postscrip

    Propagation Failure in Excitable Media

    Full text link
    We study a mechanism of pulse propagation failure in excitable media where stable traveling pulse solutions appear via a subcritical pitchfork bifurcation. The bifurcation plays a key role in that mechanism. Small perturbations, externally applied or from internal instabilities, may cause pulse propagation failure (wave breakup) provided the system is close enough to the bifurcation point. We derive relations showing how the pitchfork bifurcation is unfolded by weak curvature or advective field perturbations and use them to demonstrate wave breakup. We suggest that the recent observations of wave breakup in the Belousov-Zhabotinsky reaction induced either by an electric field or a transverse instability are manifestations of this mechanism.Comment: 8 pages. Aric Hagberg: http://cnls.lanl.gov/~aric; Ehud Meron:http://www.bgu.ac.il/BIDR/research/staff/meron.htm

    Size-Dependent Transition to High-Dimensional Chaotic Dynamics in a Two-Dimensional Excitable Medium

    Get PDF
    The spatiotemporal dynamics of an excitable medium with multiple spiral defects is shown to vary smoothly with system size from short-lived transients for small systems to extensive chaos for large systems. A comparison of the Lyapunov dimension density with the average spiral defect density suggests an average dimension per spiral defect varying between three and seven. We discuss some implications of these results for experimental studies of excitable media.Comment: 5 pages, Latex, 4 figure

    Analytically Solvable Asymptotic Model of Atrial Excitability

    Get PDF
    We report a three-variable simplified model of excitation fronts in human atrial tissue. The model is derived by novel asymptotic techniques \new{from the biophysically realistic model of Courtemanche et al (1998) in extension of our previous similar models. An iterative analytical solution of the model is presented which is in excellent quantitative agreement with the realistic model. It opens new possibilities for analytical studies as well as for efficient numerical simulation of this and other cardiac models of similar structure

    Characterization of a process for the in-furnace reduction of NOx, SO2, and HCl by carboxylic salts of calcium

    Get PDF
    Calcium magnesium acetate has been assessed as an agent for the reduction of NOx, SO2, and HCl, at the pilot scale, in a down-fired combustor operating at 80 kWth. In addition to this, the chemical and physical processes that occur during heating have been investigated. Benchmarking of calcium magnesium acetate with a suite of five other carboxylic salts (calcium magnesium acetate, calcium propionate, calcium acetate, calcium benzoate, magnesium acetate, and calcium formate) has been performed. NOx reduction involves the volatile organic content of the carboxylic salt being released at temperatures of >1000 °C, where the reaction of CHi radicals with NO under fuel-rich conditions can result in some of the NO forming N2 in a “reburning” process. Thermogravimetry-Fourier transform infrared (TG-FTIR) studies identified the nature of the decomposition products from the low- and high-temperature decompositions. In addition, the rate of weight losses were studied to investigate the influence of the organic decomposition on NOx reduction by reburning. In-furnace reductions of SO2 and HCl are aided by the highly porous, particulate residue, which results from the in situ drying, pyrolysis, and calcination processes. Simultaneous reduction of all three pollutants was obtained, and a synergy between SO2 and HCl capture was identified. A mechanism for this inter-relationship has been proposed. Sorbent particle characterization has been performed by collecting the calcined powder from a spray pyrolysis reactor and compared with those produced from a suite of pure carboxylic salts. Physical properties (including porosity, surface area, and decomposition behavior) have been discussed, relative to reductions in NOx and acid gas emissions
    • 

    corecore