271 research outputs found

    OMEGA AND BIASING FROM OPTICAL GALAXIES VERSUS POTENT MASS

    Full text link
    The mass density field in the local universe, recovered by the POTENT method from peculiar velocities of \sim3000 galaxies, is compared with the density field of optically-selected galaxies. Both density fields are smoothed with a Gaussian filter of radius 12 h1h^{-1} Mpc. Under the assumptions of gravitational instability and a linear biasing parameter b\sbo between optical galaxies and mass, we obtain \beta\sbo \equiv \om^{0.6}/b\sbo = 0.74 \pm 0.13. This result is obtained from a regression of POTENT mass density on optical density after correcting the mass density field for systematic biases in the velocity data and POTENT method. The error quoted is just the 1σ1\sigma formal error estimated from the observed scatter in the density--density scatterplot; it does not include the uncertainty due to cosmic scatter in the mean density or in the biasing relation. We do not attempt a formal analysis of the goodness of fit, but the scatter about the fit is consistent with our estimates of the uncertainties.Comment: Final revised version (minor typos corrected). 13 pages, gzipped tar file containing LaTeX and figures. The Postscript file is available at ftp://dust0.dur.ac.uk/pub/mjh/potopt/potopt.ps.Z or (gzipped) at ftp://xxx.lanl.gov/astro-ph/ps/9501/9501074.ps.gz or via WWW at http://xxx.lanl.gov/ps/astro-ph/9501074 or as separate LaTeX text and encapsulated Postscript figures in a compressed tar'd file at ftp://dust0.dur.ac.uk/pub/mjh/potopt/latex/potopt.tar.

    Shellflow. I. The Convergence of the Velocity Field at 6000 km/s

    Full text link
    We present the first results from the Shellflow program, an all-sky Tully-Fisher (TF) peculiar velocity survey of 276 Sb-Sc galaxies with redshifts between 4500 and 7000 km/s. Shellflow was designed to minimize systematic errors between observing runs and between telescopes, thereby removing the possibility of a spurious bulk flow caused by data inhomogeneity. A fit to the data yields a bulk flow amplitude V_bulk = 70{+100}{-70} km/s (1 sigma error) with respect to the Cosmic Microwave Background, i.e., consistent with being at rest. At the 95% confidence level, the flow amplitude is < 300 km/s. Our results are insensitive to which Galactic extinction maps we use, and to the parameterization of the TF relation. The larger bulk motion found in analyses of the Mark III peculiar velocity catalog are thus likely to be due to non-uniformities between the subsamples making up Mark III. The absence of bulk flow is consistent with the study of Giovanelli and collaborators and flow field predictions from the observed distribution of IRAS galaxies.Comment: Accepted version for publication in ApJ. Includes an epitaph for Jeffrey Alan Willick (Oct 8, 1959 - Jun 18, 2000

    A Library of Integrated Spectra of Galactic Globular Clusters

    Get PDF
    We present a new library of integrated spectra of 40 Galactic globular clusters, obtained with the Blanco 4-m telescope and the R-C spectrograph at the Cerro Tololo Interamerican Observatory. The spectra cover the range ~ 3350 -- 6430 A with ~ 3.1 A (FWHM) resolution. The spectroscopic observations and data reduction were designed to integrate the full projected area within the cluster core radii in order to properly sample the light from stars in all relevant evolutionary stages. The S/N values of the flux-calibrated spectra range from 50 to 240/A at 4000 A and from 125 to 500/A at 5000 A. The selected targets span a wide range of cluster parameters, including metallicity, horizontal-branch morphology, Galactic coordinates, Galactocentric distance, and concentration. The total sample is thus fairly representative of the entire Galactic globular cluster population and should be valuable for comparison with similar integrated spectra of unresolved stellar populations in remote systems. For most of the library clusters, our spectra can be coupled with deep color-magnitude diagrams and reliable metal abundances from the literature to enable the calibration of stellar population synthesis models. In this paper we present a detailed account of the observations and data reduction. The spectral library is publicly available in electronic format from the National Optical Astronomical Observatory website.Comment: 39 Pages, including 2 tables and 15 Figures. To appear in the Astrophysical Journal, Supplement Serie

    Disc-like Objects in Hierarchical Hydrodynamical Simulations: Comparison with Observations

    Get PDF
    We present results from a careful and detailed analysis of the structural and dynamical properties of a sample of 29 disc-like objects identified at z=0 in three AP3M-SPH fully consistent cosmological simulations. These simulations are realizations of a CDM hierarchical model, where an inefficient Schmidt law-like algorithm to model the stellar formation process has been implemented. We focus on properties that can be constrained with available data from observations of spiral galaxies, namely, the bulge and disc structural parameters and the rotation curves. Comparisons with data from Broeils (1992), de Jong (1996) and Courteau (1996, 1997) give satisfactory agreement, in contrast with previous findings using other codes. This suggests that the stellar formation implementation we have used has succeded in forming compact bulges that stabilize disc-like structures in the violent phases of their assembly, while in the quiescent phases the gas has cooled and collapsed according with the Fall & Efstathiou standard model of disc formation.Comment: 22 pages, LaTeX; 14 figures; references updated. MNRAS, in pres
    corecore