36 research outputs found
NRAS is unique among RAS proteins in requiring ICMT for trafficking to the plasma membrane
Isoprenylcysteine carboxyl methyltransferase (ICMT) is the third of three enzymes that sequentially modify the C-terminus of CaaX proteins, including RAS. Although all four RAS proteins are substrates for ICMT, each traffics to membranes differently by virtue of their hypervariable regions that are differentially palmitoylated. We found that among RAS proteins, NRAS was unique in requiring ICMT for delivery to the PM, a consequence of having only a single palmitoylation site as its secondary affinity module. Although not absolutely required for palmitoylation, acylation was diminished in the absence of ICMT. Photoactivation and FRAP of GFP-NRAS revealed increase flux at the Golgi, independent of palmitoylation, in the absence of ICMT. Association of NRAS with the prenyl-protein chaperone PDE6δ also required ICMT and promoted anterograde trafficking from the Golgi. We conclude that carboxyl methylation of NRAS is required for efficient palmitoylation, PDE6δ binding, and homeostatic flux through the Golgi, processes that direct delivery to the plasma membrane.</p
K-Ras4A splice variant is widely expressed in cancer and uses a hybrid membrane-targeting motif
The KRAS oncogene is mutated more frequently in human cancer than any other. The KRAS transcript is alternatively spliced to give rise to two products, K-Ras4A and K-Ras4B, both of which are oncogenic when KRAS is mutated. We detected significant amounts of each transcript in human tumor cells and colorectal carcinomas. We found that K-Ras4A is targeted to the plasma membrane by dual targeting motifs distinct from those of K-Ras4B. Because interfering with membrane association of Ras proteins remains one of the most attractive approaches to anti-Ras therapy, efforts in this direction will have to disrupt both the K-Ras4A and the K-Ras4B membrane-targeting pathways
Recommended from our members
Effect of rehabilitation worker input on visual function outcomes in individuals with low vision: study protocol for a randomised controlled trial
BACKGROUND: Visual Rehabilitation Officers help people with a visual impairment maintain their independence. This intervention adopts a flexible, goal-centred approach, which may include training in mobility, use of optical and non-optical aids, and performance of activities of daily living. Although Visual Rehabilitation Officers are an integral part of the low vision service in the United Kingdom, evidence that they are effective is lacking. The purpose of this exploratory trial is to estimate the impact of a Visual Rehabilitation Officer on self-reported visual function, psychosocial and quality-of-life outcomes in individuals with low vision.
METHODS/DESIGN: In this exploratory, assessor-masked, parallel group, randomised controlled trial, participants will be allocated either to receive home visits from a Visual Rehabilitation Officer (n = 30) or to a waiting list control group (n = 30) in a 1:1 ratio. Adult volunteers with a visual impairment, who have been identified as needing rehabilitation officer input by a social worker, will take part. Those with an urgent need for a Visual Rehabilitation Officer or who have a cognitive impairment will be excluded. The primary outcome measure will be self-reported visual function (48-item Veterans Affairs Low Vision Visual Functioning Questionnaire). Secondary outcome measures will include psychological and quality-of-life metrics: the Patient Health Questionnaire (PHQ-9), the Warwick-Edinburgh Mental Well-being Scale (WEMWBS), the Adjustment to Age-related Visual Loss Scale (AVL-12), the Standardised Health-related Quality of Life Questionnaire (EQ-5D) and the UCLA Loneliness Scale. The interviewer collecting the outcomes will be masked to the group allocations. The analysis will be undertaken on a complete case and intention-to-treat basis. Analysis of covariance (ANCOVA) will be applied to follow-up questionnaire scores, with the baseline score as a covariate.
DISCUSSION: This trial is expected to provide robust effect size estimates of the intervention effect. The data will be used to design a large-scale randomised controlled trial to evaluate fully the Visual Rehabilitation Officer intervention. A rigorous evaluation of Rehabilitation Officer input is vital to direct a future low vision rehabilitation strategy and to help direct government resources.
TRIAL REGISTRATION: The trial was registered with ( ISRCTN44807874 ) on 9 March 2015
Visual impairment is associated with physical and mental comorbidities in older adults:a cross-sectional study
Background<p></p>
Visual impairment is common in older people and the presence of additional health conditions can compromise health and rehabilitation outcomes. A small number of studies have suggested that comorbities are common in visual impairment; however, those studies have relied on self-report and have assessed a relatively limited number of comorbid conditions.<p></p>
Methods<p></p>
We conducted a cross-sectional analysis of a dataset of 291,169 registered patients (65-years-old and over) within 314 primary care practices in Scotland, UK. Visual impairment was identified using Read Code ever recorded for blindness and/or low vision (within electronic medical records). Prevalence, odds ratios (from prevalence rates standardised by stratifying individuals by age groups (65 to 69 years; 70 to 74; 75 to 79; 80 to 84; and 85 and over), gender and deprivation quintiles) and 95% confidence intervals (95% CI) of 37 individual chronic physical/mental health conditions and total number of conditions were calculated and compared for those with visual impairment to those without.<p></p>
Results<p></p>
Twenty seven of the 29 physical health conditions and all eight mental health conditions were significantly more likely to be recorded for individuals with visual impairment compared to individuals without visual impairment, after standardising for age, gender and social deprivation. Individuals with visual impairment were also significantly more likely to have more comorbidities (for example, five or more conditions (odds ratio (OR) 2.05 95% CI 1.94 to 2.18)).<p></p>
Conclusions<p></p>
Patients aged 65 years and older with visual impairment have a broad range of physical and mental health comorbidities compared to those of the same age without visual impairment, and are more likely to have multiple comorbidities. This has important implications for clinical practice and for the future design of integrated services to meet the complex needs of patients with visual impairment, for example, embedding depression and hearing screening within eye care services
Mycobacterial trehalose dimycolate reprograms macrophage global gene expression and activates matrix metalloproteinases.
Trehalose 6,6′-dimycolate (TDM) is a cell wall glycolipid and an important virulence factor of mycobacteria. In order to study the role of TDM in the innate immune response to Mycobacterium tuberculosis, microarray analysis was used to examine gene regulation in murine bone marrow-derived macrophages in response to 90-μm-diameter polystyrene microspheres coated with TDM. A large number of genes, particularly those involved in the immune response and macrophage function, were up- or downregulated in response to these TDM-coated beads compared to control beads. Genes involved in the immune response were specifically upregulated in a myeloid differentiation primary response gene 88 (MyD88)-dependent manner. The complexity of the transcriptional response also increased greatly between 2 and 24 h. Matrix metalloproteinases (MMPs) were significantly upregulated at both time points, and this was confirmed by quantitative real-time reverse transcription-PCR (RT-PCR). Using an in vivo Matrigel granuloma model, the presence and activity of MMP-9 were examined by immunohistochemistry and in situ zymography (ISZ), respectively. We found that TDM-coated beads induced MMP-9 expression and activity in Matrigel granulomas. Macrophages were primarily responsible for MMP-9 expression, as granulomas from neutrophil-depleted mice showed staining patterns similar to that for wild-type mice. The relevance of these observations to human disease is supported by the similar induction of MMP-9 in human caseous tuberculosis (TB) granulomas. Given that MMPs likely play an important role in both the construction and breakdown of tuberculous granulomas, our results suggest that TDM may drive MMP expression during TB pathogenesis
NRAS is unique among RAS proteins in requiring ICMT for trafficking to the plasma membrane
Isoprenylcysteine carboxyl methyltransferase (ICMT) is the third of three enzymes that sequentially modify the C-terminus of CaaX proteins, including RAS. Although all four RAS proteins are substrates for ICMT, each traffics to membranes differently by virtue of their hypervariable regions that are differentially palmitoylated. We found that among RAS proteins, NRAS was unique in requiring ICMT for delivery to the PM, a consequence of having only a single palmitoylation site as its secondary affinity module. Although not absolutely required for palmitoylation, acylation was diminished in the absence of ICMT. Photoactivation and FRAP of GFP-NRAS revealed increase flux at the Golgi, independent of palmitoylation, in the absence of ICMT. Association of NRAS with the prenyl-protein chaperone PDE6δ also required ICMT and promoted anterograde trafficking from the Golgi. We conclude that carboxyl methylation of NRAS is required for efficient palmitoylation, PDE6δ binding, and homeostatic flux through the Golgi, processes that direct delivery to the plasma membrane
The global regulator RNase III modulates translation repression by the transcription elongation factor N
Efficient expression of most bacteriophage λ early genes depends upon the formation of an antiterminating transcription complex to overcome transcription terminators in the early operons, p(L) and p(R). Forma tion of this complex requires the phage-encoded protein N, the first gene product expressed from the p(L) operon. The N leader RNA contains, in this order: the NUTL site, an RNase III-sensitive hairpin and the N ribosome-binding site. N bound to NUTL RNA is part of both the antitermination complex and an autoregulatory complex that represses the translation of the N gene. In this study, we show that cleavage of the N leader by RNase III does not inhibit antitermination but prevents N-mediated translation repression of N gene expression. In fact, by preventing N autoregulation, RNase III activates N gene translation at least 200-fold. N-mediated translation repression is extremely sensitive to growth rate, reflecting the growth rate regulation of RNase III expression itself. Given N protein’s critical role in λ development, the level of RNase III activity therefore serves as an important sensor of physiological conditions for the bacteriophage
Topology of Mammalian Isoprenylcysteine Carboxyl Methyltransferase Determined in Live Cells with a Fluorescent Probe▿
Isoprenylcysteine carboxyl methyltransferase (Icmt) is a highly conserved enzyme that methyl esterifies the α carboxyl group of prenylated proteins including Ras and related GTPases. Methyl esterification neutralizes the negative charge of the prenylcysteine and thereby increases membrane affinity. Icmt is an integral membrane protein restricted to the endoplasmic reticulum (ER). The Saccharomyces cerevisiae ortholog, Ste14p, traverses the ER membrane six times. We used a novel fluorescent reporter to map the topology of human Icmt in living cells. Our results indicate that Icmt traverses the ER membrane eight times, with both N and C termini disposed toward the cytosol and with a helix-turn-helix structure comprising transmembrane (TM) segments 7 and 8. Several conserved amino acids that map to cytoplasmic portions of the enzyme are critical for full enzymatic activity. Mammalian Icmt has an N-terminal extension consisting of two TM segments not found in Ste14p and therefore likely to be regulatory. Icmt is a target for anticancer drug discovery, and these data may facilitate efforts to develop small-molecule inhibitors
Isoprenylcysteine carboxylmethyltransferase deficiency exacerbates KRAS-driven pancreatic neoplasia via Notch suppression
RAS is the most frequently mutated oncogene in human cancers. Despite decades of effort, anti-RAS therapies have remained elusive. Isoprenylcysteine carboxylmethyltransferase (ICMT) methylates RAS and other CaaX-containing proteins, but its potential as a target for cancer therapy has not been fully evaluated. We crossed a Pdx1-Cre;LSL-Kras(G12D) mouse, which is a model of pancreatic ductal adenocarcinoma (PDA), with a mouse harboring a floxed allele of Icmt. Surprisingly, we found that ICMT deficiency dramatically accelerated the development and progression of neoplasia. ICMT-deficient pancreatic ductal epithelial cells had a slight growth advantage and were resistant to premature senescence by a mechanism that involved suppression of cyclin-dependent kinase inhibitor 2A (p16(INK4A)) expression. ICMT deficiency precisely phenocopied Notch1 deficiency in the Pdx1-Cre;LSL-Kras(G12D) model by exacerbating pancreatic intraepithelial neoplasias, promoting facial papillomas, and derepressing Wnt signaling. Silencing ICMT in human osteosarcoma cells decreased Notch1 signaling in response to stimulation with cell-surface ligands. Additionally, targeted silencing of Ste14, the Drosophila homolog of Icmt, resulted in defects in wing development, consistent with Notch loss of function. Our data suggest that ICMT behaves like a tumor suppressor in PDA because it is required for Notch1 signaling
K-Ras4A splice variant is widely expressed in cancer and uses a hybrid membrane-targeting motif
The two products of the KRAS locus, K-Ras4A and K-Ras4B, are encoded by alternative fourth exons and therefore, possess distinct membrane-targeting sequences. The common activating mutations occur in exons 1 or 2 and therefore, render both splice variants oncogenic. K-Ras4A has been understudied, because it has been considered a minor splice variant. By priming off of the splice junction, we developed a quantitative RT-PCR assay for K-Ras4A and K-Ras4B message capable of measuring absolute amounts of the two transcripts. We found that K-Ras4A was widely expressed in 30 of 30 human cancer cell lines and amounts equal to K-Ras4B in 17 human colorectal tumors. Using splice variant-specific antibodies, we detected K-Ras4A protein in several tumor cell lines at a level equal to or greater than that of K-Ras4B. In addition to the CAAX motif, the C terminus of K-Ras4A contains a site of palmitoylation as well as a bipartite polybasic region. Although both were required for maximal efficiency, each of these could independently deliver K-Ras4A to the plasma membrane. Thus, among four Ras proteins, K-Ras4A is unique in possessing a dual membrane-targeting motif. We also found that, unlike K-Ras4B, K-Ras4A does not bind to the cytosolic chaperone δ-subunit of cGMP phosphodiesterase type 6 (PDE6δ). We conclude that efforts to develop anti–K-Ras drugs that interfere with membrane trafficking will have to take into account the distinct modes of targeting of the two K-Ras splice variants