108 research outputs found

    How Oxygen Availability Affects the Antimicrobial Efficacy of Host Defense Peptides: Lessons Learned from Studying the Copper-Binding Peptides Piscidins 1 and 3

    Get PDF
    The development of new therapeutic options against Clostridioides difficile (C. difficile) infection is a critical public health concern, as the causative bacterium is highly resistant to multiple classes of antibiotics. Antimicrobial host-defense peptides (HDPs) are highly effective at simultaneously modulating the immune system function and directly killing bacteria through membrane disruption and oxidative damage. The copper-binding HDPs piscidin 1 and piscidin 3 have previously shown potent antimicrobial activity against a number of Gram-negative and Gram-positive bacterial species but have never been investigated in an anaerobic environment. Synergy between piscidins and metal ions increases bacterial killing aerobically. Here, we performed growth inhibition and time-kill assays against C. difficile showing that both piscidins suppress proliferation of C. difficile by killing bacterial cells. Microscopy experiments show that the peptides accumulate at sites of membrane curvature. We find that both piscidins are effective against epidemic C. difficile strains that are highly resistant to other stresses. Notably, copper does not enhance piscidin activity against C. difficile. Thus, while antimicrobial activity of piscidin peptides is conserved in aerobic and anaerobic settings, the peptide–copper interaction depends on environmental oxygen to achieve its maximum potency. The development of pharmaceuticals from HDPs such as piscidin will necessitate consideration of oxygen levels in the targeted tissue

    Single cell analysis of nutrient regulation of Clostridioides (Clostridium) difficile motility

    Get PDF
    Regulation of bacterial motility to maximize nutrient acquisition or minimize exposure to harmful substances plays an important role in microbial proliferation and host colonization. The technical difficulties of performing high-resolution live microscopy on anaerobes have hindered mechanistic studies of motility in Clostridioides (formerly Clostridium) difficile. Here, we present a widely applicable protocol for live cell imaging of anaerobic bacteria that has allowed us to characterize C. difficile swimming at the single-cell level. This accessible method for anaerobic live cell microscopy enables inquiry into previously inaccessible aspects of C. difficile physiology and behavior. We present the first report that vegetative C. difficile are capable of regulated motility in the presence of different nutrients. We demonstrate that the epidemic C. difficile strain R20291 exhibits regulated motility in the presence of multiple nutrient sources by modulating its swimming velocity. This is a powerful illustration of the ability of single-cell studies to explain population-wide phenomena such as dispersal through the environment

    Logopenic and nonfluent variants of primary progressive aphasia are differentiated by acoustic measures of speech production

    Get PDF
    Differentiation of logopenic (lvPPA) and nonfluent/agrammatic (nfvPPA) variants of Primary Progressive Aphasia is important yet remains challenging since it hinges on expert based evaluation of speech and language production. In this study acoustic measures of speech in conjunction with voxel-based morphometry were used to determine the success of the measures as an adjunct to diagnosis and to explore the neural basis of apraxia of speech in nfvPPA. Forty-one patients (21 lvPPA, 20 nfvPPA) were recruited from a consecutive sample with suspected frontotemporal dementia. Patients were diagnosed using the current gold-standard of expert perceptual judgment, based on presence/absence of particular speech features during speaking tasks. Seventeen healthy age-matched adults served as controls. MRI scans were available for 11 control and 37 PPA cases; 23 of the PPA cases underwent amyloid ligand PET imaging. Measures, corresponding to perceptual features of apraxia of speech, were periods of silence during reading and relative vowel duration and intensity in polysyllable word repetition. Discriminant function analyses revealed that a measure of relative vowel duration differentiated nfvPPA cases from both control and lvPPA cases (r2 = 0.47) with 88% agreement with expert judgment of presence of apraxia of speech in nfvPPA cases. VBM analysis showed that relative vowel duration covaried with grey matter intensity in areas critical for speech motor planning and programming: precentral gyrus, supplementary motor area and inferior frontal gyrus bilaterally, only affected in the nfvPPA group. This bilateral involvement of frontal speech networks in nfvPPA potentially affects access to compensatory mechanisms involving right hemisphere homologues. Measures of silences during reading also discriminated the PPA and control groups, but did not increase predictive accuracy. Findings suggest that a measure of relative vowel duration from of a polysyllable word repetition task may be sufficient for detecting most cases of apraxia of speech and distinguishing between nfvPPA and lvPPA

    Molecular motors robustly drive active gels to a critically connected state

    Full text link
    Living systems often exhibit internal driving: active, molecular processes drive nonequilibrium phenomena such as metabolism or migration. Active gels constitute a fascinating class of internally driven matter, where molecular motors exert localized stresses inside polymer networks. There is evidence that network crosslinking is required to allow motors to induce macroscopic contraction. Yet a quantitative understanding of how network connectivity enables contraction is lacking. Here we show experimentally that myosin motors contract crosslinked actin polymer networks to clusters with a scale-free size distribution. This critical behavior occurs over an unexpectedly broad range of crosslink concentrations. To understand this robustness, we develop a quantitative model of contractile networks that takes into account network restructuring: motors reduce connectivity by forcing crosslinks to unbind. Paradoxically, to coordinate global contractions, motor activity should be low. Otherwise, motors drive initially well-connected networks to a critical state where ruptures form across the entire network.Comment: Main text: 21 pages, 5 figures. Supplementary Information: 13 pages, 8 figure

    Fast Benchtop Fabrication of Laminar Flow Chambers for Advanced Microscopy Techniques

    Get PDF
    Background: Fluid handling technology is acquiring an ever more prominent place in laboratory science whether it is in simple buffer exchange systems, perfusion chambers, or advanced microfluidic devices. Many of these applications remain the providence of laboratories at large institutions with a great deal of expertise and specialized equipment. Even with the expansion of these techniques, limitations remain that frequently prevent the coupling of controlled fluid flow with other technologies, such as coupling microfluidics and high-resolution position and force measurements by optical trapping microscopy. Method: Here we present a method for fabrication of multiple-input laminar flow devices that are optically clear [glass] on each face, chemically inert, reusable, inexpensive, and can be fabricated on the benchtop in approximately one hour. Further these devices are designed to allow flow regulation by a simple gravity method thus requiring no specialized equipment to drive flow. Here we use these devices to perform total internal reflection fluorescence microscopy measurements as well as position sensitive optical trapping experiments. Significance: Flow chamber technology needs to be more accessible to the general scientific community. The method presented here is versatile and robust. These devices use standard slides and coverslips making them compatible with nearly all types and models of light microscopes. These devices meet the needs of groups doing advanced optical trapping experiments, but could also be adapted by nearly any lab that has a function for solution flow coupled with microscopy

    Wirelessly powered drug-free and anti-infective smart bandage for chronic wound care

    Get PDF
    We present a wirelessly powered ultraviolet-C (UVC) radiation-based disinfecting bandage for sterilization and treatment in chronic wound care and management. The bandage contains embedded low-power UV light-emitting diodes (LEDs) in the 265 to 285 nm range with the light emission controlled via a microcontroller. An inductive coil is seamlessly concealed in the fabric bandage and coupled with a rectifier circuit to enable 6.78 MHz wireless power transfer (WPT). The maximum WPT efficiency of the coils is 83% in free space and 75% on the body at a coupling distance of 4.5 cm. Measurements show that the UVC LEDs are emitting radiant power of about 0.6 mW and 6.8 mW with and without fabric bandage, respectively, when wirelessly powered. The ability of the bandage to inactivate microorganisms was examined in a laboratory which shows that the system can effectively eradicate Gram-negative bacteria, Pseudoalteromonas sp. D41 strain, on surfaces in six hours. The proposed smart bandage system is low-cost, battery-free, flexible and can be easily mounted on the human body and, therefore, shows great promise for the treatment of persistent infections in chronic wound care

    Testing the Emergency Action Plan in Athletics

    No full text

    Neuron-Epithelial Cell Fusion Occurs in the Central Murine Cornea

    No full text
    Of the 21 interactions observed in the central cornea, 43% were fusing with basal corneal epithelial cells. Nerves undergoing fusion were twice as large in diameter as standard corneal stromal nerves. Fusing nerves lack mitochondria and functional microtubules. In this study a novel form of cell interaction in the cornea was discovered and phenotypically defined; this form of cell interaction occurs exclusively in the central cornea, involves a nerve axon twice as large as nerves penetrating the basal lamina and contributing to the epithelial nerve plexus, and is devoid of mitochondria and microtubules.Vision Science
    • …
    corecore